ABSTRACT
Natural products (NP) or secondary metabolites, as a class of small chemical molecules that are naturally synthesized by chromosomally clustered biosynthesis genes (also called biosynthetic gene clusters, BGCs) encoded enzymes or enzyme complexes, mediates the bioecological interactions between host and microbiota and provides a natural reservoir for screening drug-like therapeutic pharmaceuticals. In this work, we propose a multi-label learning framework to functionally annotate natural products or secondary metabolites solely from their catalytical biosynthetic gene clusters without experimentally conducting NP structural resolutions. All chemical classes and bioactivities constitute the label space, and the sequence domains of biosynthetic gene clusters that catalyse the biosynthesis of natural products constitute the feature space. In this multi-label learning framework, a joint representation of features (BGCs domains) and labels (natural products annotations) is efficiently learnt in an integral and low-dimensional space to accurately define the inter-class boundaries and scale to the learning problem of many imbalanced labels. Computational results on experimental data show that the proposed framework achieves satisfactory multi-label learning performance, and the learnt patterns of BGCs domains are transferrable across bacteria, or even across kingdom, for instance, from bacteria to Arabidopsis thaliana. Lastly, take Arabidopsis thaliana and its rhizosphere microbiome for example, we propose a pipeline combining existing BGCs identification tools and this proposed framework to find and functionally annotate novel natural products for downstream bioecological studies in terms of plant-microbiota-soil interactions and plant environmental adaption.
Subject(s)
Arabidopsis , Biological Products , Microbiota , Computational Biology/methods , Arabidopsis/genetics , Microbiota/genetics , Multigene Family , Biosynthetic Pathways/geneticsABSTRACT
Rapid reconstruction of genome-scale protein-protein interaction (PPI) networks is instrumental in understanding the cellular processes and disease pathogenesis and drug reactions. However, lack of experimentally verified negative data (i.e., pairs of proteins that do not interact) is still a major issue that needs to be properly addressed in computational modeling. In this study, we take advantage of the very limited experimentally verified negative data from Negatome to infer more negative data for computational modeling. We assume that the paralogs or orthologs of two non-interacting proteins also do not interact with high probability. We coin an assumption as "Neglog" this assumption is to some extent supported by paralogous/orthologous structure conservation. To reduce the risk of bias toward the negative data from Negatome, we combine Neglog with less biased random sampling according to a certain ratio to construct training data. L2-regularized logistic regression is used as the base classifier to counteract noise and train on a large dataset. Computational results show that the proposed Neglog method outperforms pure random sampling method with sound biological interpretability. In addition, we find that independent test on negative data is indispensable for bias control, which is usually neglected by existing studies. Lastly, we use the Neglog method to validate the PPIs in STRING, which are supported by gene ontology (GO) enrichment analyses.
Subject(s)
Genomics/methods , Protein Interaction Mapping/methods , Sequence Homology, Amino Acid , Software , Humans , Machine Learning , Protein Interaction MapsABSTRACT
Bacterial protein-protein interaction (PPI) networks are significant to reveal the machinery of signal transduction and drug resistance within bacterial cells. The database STRING has collected a large number of bacterial pathogen PPI networks, but most of the data are of low quality without being experimentally or computationally validated, thus restricting its further biomedical applications. We exploit the experimental data via four solutions to enhance the quality of M. tuberculosis H37Rv (MTB) PPI networks in STRING. Computational results show that the experimental data derived jointly by two-hybrid and copurification approaches are the most reliable to train an L2-regularized logistic regression model for MTB PPI network validation. On the basis of the validated MTB PPI networks, we further study the three problems via breadth-first graph search algorithm: (1) discovery of MTB drug-resistance pathways through searching for the paths between known drug-target genes and drug-resistance genes, (2) choosing potential cotarget genes via searching for the critical genes located on multiple pathways, and (3) choosing essential drug-target genes via analysis of network degree distribution. In addition, we further combine the validated MTB PPI networks with human PPI networks to analyze the potential pharmacological risks of known and candidate drug-target genes from the point of view of system pharmacology. The evidence from protein structure alignment demonstrates that the drugs that act on MTB target genes could also adversely act on human signaling pathways.
Subject(s)
Bacterial Proteins/metabolism , Computer Simulation , Drug Resistance , Mycobacterium tuberculosis/chemistry , Protein Interaction Maps , Algorithms , Humans , Logistic Models , Risk , Signal Transduction/drug effectsABSTRACT
BACKGROUND: Bacterial invasive infection and host immune response is fundamental to the understanding of pathogen pathogenesis and the discovery of effective therapeutic drugs. However, there are very few experimental studies on the signaling cross-talks between bacteria and human host to date. METHODS: In this work, taking M. tuberculosis H37Rv (MTB) that is co-evolving with its human host as an example, we propose a general computational framework that exploits the known bacterial pathogen protein interaction networks in STRING database to predict pathogen-host protein interactions and their signaling cross-talks. In this framework, significant interlogs are derived from the known pathogen protein interaction networks to train a predictive l2-regularized logistic regression model. RESULTS: The computational results show that the proposed method achieves excellent performance of cross validation as well as low predicted positive rates on the less significant interlogs and non-interlogs, indicating a low risk of false discovery. We further conduct gene ontology (GO) and pathway enrichment analyses of the predicted pathogen-host protein interaction networks, which potentially provides insights into the machinery that M. tuberculosis H37Rv targets human genes and signaling pathways. In addition, we analyse the pathogen-host protein interactions related to drug resistance, inhibition of which potentially provides an alternative solution to M. tuberculosis H37Rv drug resistance. CONCLUSIONS: The proposed machine learning framework has been verified effective for predicting bacteria-host protein interactions via known bacterial protein interaction networks. For a vast majority of bacterial pathogens that lacks experimental studies of bacteria-host protein interactions, this framework is supposed to achieve a general-purpose applicability. The predicted protein interaction networks between M. tuberculosis H37Rv and Homo sapiens, provided in the Additional files, promise to gain applications in the two fields: (1) providing an alternative solution to drug resistance; (2) revealing the patterns that M. tuberculosis H37Rv genes target human immune signaling pathways.
Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions/genetics , Mycobacterium tuberculosis/metabolism , Protein Interaction Maps/genetics , Signal Transduction/genetics , Tuberculosis/genetics , Area Under Curve , Databases, Genetic , Drug Resistance, Bacterial/genetics , Gene Ontology , Humans , Immune System/metabolism , Immune System/microbiology , Logistic Models , ROC Curve , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/pathologyABSTRACT
BACKGROUND: Signaling pathways play important roles in the life processes of cell growth, cell apoptosis and organism development. At present the signal transduction networks are far from complete. As an effective complement to experimental methods, computational modeling is suited to rapidly reconstruct the signaling pathways at low cost. To our knowledge, the existing computational methods seldom simultaneously exploit more than three signaling pathways into one predictive model for the discovery of novel signaling components and the cross-talk modeling between signaling pathways. RESULTS: In this work, we propose a multi-label multi-instance transfer learning method to simultaneously reconstruct 27 human signaling pathways and model their cross-talks. Computational results show that the proposed method demonstrates satisfactory multi-label learning performance and rational proteome-wide predictions. Some predicted signaling components or pathway targeted proteins have been validated by recent literature. The predicted signaling components are further linked to pathways using the experimentally derived PPIs (protein-protein interactions) to reconstruct the human signaling pathways. Thus the map of the cross-talks via common signaling components and common signaling PPIs is conveniently inferred to provide valuable insights into the regulatory and cooperative relationships between signaling pathways. Lastly, gene ontology enrichment analysis is conducted to gain statistical knowledge about the reconstructed human signaling pathways. CONCLUSIONS: Multi-label learning framework has been demonstrated effective in this work to model the phenomena that a signaling protein belongs to more than one signaling pathway. As results, novel signaling components and pathways targeted proteins are predicted to simultaneously reconstruct multiple human signaling pathways and the static map of their cross-talks for further biomedical research.
Subject(s)
Models, Biological , Signal Transduction , Databases, Protein , Gene Ontology , Humans , Protein Interaction Mapping , Protein Transport , Reproducibility of Results , Staining and LabelingABSTRACT
BACKGROUND: Human T-cell leukemia viruses (HTLV) tend to induce some fatal human diseases like Adult T-cell Leukemia (ATL) by targeting human T lymphocytes. To indentify the protein-protein interactions (PPI) between HTLV viruses and Homo sapiens is one of the significant approaches to reveal the underlying mechanism of HTLV infection and host defence. At present, as biological experiments are labor-intensive and expensive, the identified part of the HTLV-human PPI networks is rather small. Although recent years have witnessed much progress in computational modeling for reconstructing pathogen-host PPI networks, data scarcity and data unavailability are two major challenges to be effectively addressed. To our knowledge, no computational method for proteome-wide HTLV-human PPI networks reconstruction has been reported. RESULTS: In this work we develop Multi-instance Adaboost method to conduct homolog knowledge transfer for computationally reconstructing proteome-wide HTLV-human PPI networks. In this method, the homolog knowledge in the form of gene ontology (GO) is treated as auxiliary homolog instance to address the problems of data scarcity and data unavailability, while the potential negative knowledge transfer is automatically attenuated by AdaBoost instance reweighting. The cross validation experiments show that the homolog knowledge transfer in the form of independent homolog instances can effectively enrich the feature information and substitute for the missing GO information. Moreover, the independent tests show that the method can validate 70.3% of the recently curated interactions, significantly exceeding the 2.1% recognition rate by the HT-Y2H experiment. We have used the method to reconstruct the proteome-wide HTLV-human PPI networks and further conducted gene ontology based clustering of the predicted networks for further biomedical research. The gene ontology based clustering analysis of the predictions provides much biological insight into the pathogenesis of HTLV retroviruses. CONCLUSIONS: The Multi-instance AdaBoost method can effectively address the problems of data scarcity and data unavailability for the proteome-wide HTLV-human PPI interaction networks reconstruction. The gene ontology based clustering analysis of the predictions reveals some important signaling pathways and biological modules that HTLV retroviruses are likely to target.
Subject(s)
Deltaretrovirus/genetics , Protein Interaction Mapping/methods , Proteomics/methods , Cluster Analysis , Gene Ontology , Host-Pathogen Interactions , HumansABSTRACT
Membrane proteins play important roles in molecular trans-membrane transport, ligand-receptor recognition, cell-cell interaction, enzyme catalysis, host immune defense response and infectious disease pathways. Up to present, discriminating membrane proteins remains a challenging problem from the viewpoints of biological experimental determination and computational modeling. This work presents SVM ensemble based transfer learning model for membrane proteins discrimination (SVM-TLM). To reduce the data constraints on computational modeling, this method investigates the effectiveness of transferring the homolog knowledge to the target membrane proteins under the framework of probability weighted ensemble learning. As compared to multiple kernel learning based transfer learning model, the method takes the advantages of sparseness based SVM optimization on large data, thus more computationally efficient for large protein data analysis. The experiments on large membrane protein benchmark dataset show that SVM-TLM achieves significantly better cross validation performance than the baseline model.
Subject(s)
Computational Biology/methods , Membrane Proteins/chemistry , Support Vector Machine , Algorithms , Cell Communication , Cell Membrane/metabolism , Computer Simulation , Databases, Protein , Ligands , Models, Theoretical , Normal Distribution , Reproducibility of Results , Software , Time FactorsABSTRACT
In silico modelling takes the advantage of accelerating ecotoxicological assessments on hazardous chemicals without conducting risky in vivo experiments under ethic regulation. To date, the prevailing strategy of one model for one species cannot be well generalized to multi-species modelling. In this work, we propose a new strategy of one model for multiple species to facilitate knowledge transfer across aquatic species. The available lethal concentration values of 4952 pesticides on 651 fish species are aggregated into one toxicity response matrix, purely through which we attempt to unravel fish toxicosis-phylogenesis relationships and pesticide toxicity-structure relationships via clustering techniques including non-negative matrix factorization (NMF) and hierarchical clustering. The clustering results suggest that (1) close NMF weights indicate close species-toxicosis and pesticide-toxicity profiles; (2) and that species toxicosis patterns are related with species phylogenetic relationships; (3) and that close pesticide-toxicity profiles indicate similar atom-pair structural fingerprints. These environmental, chemical and biological insights can be used as expert knowledge for environmentalists to manually gain knowledge about untested species/pesticides from tested species/pesticides, and meanwhile provide support for us to build in silico models from species phylogenetic and pesticide structural points of view. Besides unravelling the mechanisms behind toxicity response, we also adopt stratified cross validation and external test to validate the reliability of using NMF to predict missing toxicity values. Independent test on external data shows that NMF achieves 0.8404-0.9397 R2 on four fish species. In the context of toxicity prediction, non-negative matrix factorization can be viewed as a model based on quantitative activity-activity relationships (QAAR), and provides an alternative approach of inferring toxicity values on untested species from tested species.
Subject(s)
Fishes , Pesticides , Water Pollutants, Chemical , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cluster Analysis , Ecotoxicology , Aquatic Organisms/drug effectsABSTRACT
Recent years have witnessed much progress in computational modeling for protein subcellular localization. However, there are far few computational models for predicting plant protein subcellular multi-localization. In this paper, we propose a multi-label multi-kernel transfer learning model for predicting multiple subcellular locations of plant proteins (MLMK-TLM). The method proposes a multi-label confusion matrix and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which we further extend our published work MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization) for plant protein subcellular multi-localization. By proper homolog knowledge transfer, MLMK-TLM is applicable to novel plant protein subcellular localization in multi-label learning scenario. The experiments on plant protein benchmark dataset show that MLMK-TLM outperforms the baseline model. Unlike the existing models, MLMK-TLM also reports its misleading tendency, which is important for comprehensive survey of model's multi-labeling performance.
Subject(s)
Artificial Intelligence , Computational Biology/methods , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Software , Databases, Protein , Protein Transport , Subcellular Fractions/metabolismABSTRACT
Protein sub-organelle localization, e.g. submitochondria, seems more challenging than general protein subcellular localization, because the determination of protein's micro-level localization within organelle by fluorescent imaging technique would face up with more difficulties. Up to present, there are far few computational methods for protein submitochondria localization, and the existing sequence-based predictive models demonstrate moderate or unsatisfactory performance. Recent researches have demonstrated that gene ontology (GO) is a convincingly effective protein feature for protein subcellular localization. However, the GO information may not be available for novel proteins or sparsely annotated protein subfamilies. In allusion to the problem, we transfer the homology's GO information to the target protein and propose a multi-kernel transfer learning model for protein submitochondria localization (MK-TLM), which substantially extends our previously published work (gene ontology based transfer learning model for protein subcellular localization, GO-TLM). To reduce the risk of performance overestimation, we conduct a more comprehensive survey of the model performance in optimistic case, moderate case and pessimistic case according to the abundance of target protein's GO information. The experiments on submitochondria benchmark datasets show that MK-TLM significantly outperforms the baseline models, and demonstrates excellent performance for novel mitochondria proteins and those mitochondria proteins that belong to the subfamily we know little about.
Subject(s)
Mitochondrial Proteins/analysis , Models, Biological , Submitochondrial Particles/chemistry , Animals , Artificial Intelligence , Computational Biology/methods , Databases, Protein , Mitochondrial Membranes/chemistryABSTRACT
BACKGROUND: Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. RESULTS: In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM) for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for protein subcellular localization. We evaluate GO-TLM performance against three baseline models: MultiLoc, MultiLoc-GO and Euk-mPLoc on the benchmark datasets the baseline models adopted. 5-fold cross validation experiments show that GO-TLM achieves substantial accuracy improvement against the baseline models: 80.38% against model Euk-mPLoc 67.40% with 12.98% substantial increase; 96.65% and 96.27% against model MultiLoc-GO 89.60% and 89.60%, with 7.05% and 6.67% accuracy increase on dataset MultiLoc plant and dataset MultiLoc animal, respectively; 97.14%, 95.90% and 96.85% against model MultiLoc-GO 83.70%, 90.10% and 85.70%, with accuracy increase 13.44%, 5.8% and 11.15% on dataset BaCelLoc plant, dataset BaCelLoc fungi and dataset BaCelLoc animal respectively. For BaCelLoc independent sets, GO-TLM achieves 81.25%, 80.45% and 79.46% on dataset BaCelLoc plant holdout, dataset BaCelLoc plant holdout and dataset BaCelLoc animal holdout, respectively, as compared against baseline model MultiLoc-GO 76%, 60.00% and 73.00%, with accuracy increase 5.25%, 20.45% and 6.46%, respectively. CONCLUSIONS: Since direct homology-based GO term transfer may be prone to introducing noise and outliers to the target protein, we design an explicitly weighted kernel learning system (called Gene Ontology Based Transfer Learning Model, GO-TLM) to transfer to the target protein the known knowledge about related homologous proteins, which can reduce the risk of outliers and share knowledge between homologous proteins, and thus achieve better predictive performance for protein subcellular localization. Cross validation and independent test experimental results show that the homology-based GO term transfer and explicitly weighing the GO kernels substantially improve the prediction performance.
Subject(s)
Computational Biology/methods , Sequence Analysis, Protein/methods , Software , Vocabulary, Controlled , Databases, Protein , Models, Statistical , Statistics, NonparametricABSTRACT
Understanding drug-drug interactions is an essential step to reduce the risk of adverse drug events before clinical drug co-prescription. Existing methods, commonly integrating heterogeneous data to increase model performance, often suffer from a high model complexity, As such, how to elucidate the molecular mechanisms underlying drug-drug interactions while preserving rational biological interpretability is a challenging task in computational modeling for drug discovery. In this study, we attempt to investigate drug-drug interactions via the associations between genes that two drugs target. For this purpose, we propose a simple f drug target profile representation to depict drugs and drug pairs, from which an l2-regularized logistic regression model is built to predict drug-drug interactions. Furthermore, we define several statistical metrics in the context of human protein-protein interaction networks and signaling pathways to measure the interaction intensity, interaction efficacy and action range between two drugs. Large-scale empirical studies including both cross validation and independent test show that the proposed drug target profiles-based machine learning framework outperforms existing data integration-based methods. The proposed statistical metrics show that two drugs easily interact in the cases that they target common genes; or their target genes connect via short paths in protein-protein interaction networks; or their target genes are located at signaling pathways that have cross-talks. The unravelled mechanisms could provide biological insights into potential adverse drug reactions of co-prescribed drugs.
Subject(s)
Drug Discovery , Drug Interactions , Machine Learning , Computational Biology/methods , Drug Discovery/methods , Humans , Protein Interaction Maps/drug effects , Signal Transduction/drug effectsABSTRACT
BACKGROUND: Prediction of protein localization in subnuclear organelles is more challenging than general protein subcelluar localization. There are only three computational models for protein subnuclear localization thus far, to the best of our knowledge. Two models were based on protein primary sequence only. The first model assumed homogeneous amino acid substitution pattern across all protein sequence residue sites and used BLOSUM62 to encode k-mer of protein sequence. Ensemble of SVM based on different k-mers drew the final conclusion, achieving 50% overall accuracy. The simplified assumption did not exploit protein sequence profile and ignored the fact of heterogeneous amino acid substitution patterns across sites. The second model derived the PsePSSM feature representation from protein sequence by simply averaging the profile PSSM and combined the PseAA feature representation to construct a kNN ensemble classifier Nuc-PLoc, achieving 67.4% overall accuracy. The two models based on protein primary sequence only both achieved relatively poor predictive performance. The third model required that GO annotations be available, thus restricting the model's applicability. METHODS: In this paper, we only use the amino acid information of protein sequence without any other information to design a widely-applicable model for protein subnuclear localization. We use K-spectrum kernel to exploit the contextual information around an amino acid and the conserved motif information. Besides expanding window size, we adopt various amino acid classification approaches to capture diverse aspects of amino acid physiochemical properties. Each amino acid classification generates a series of spectrum kernels based on different window size. Thus, (I) window expansion can capture more contextual information and cover size-varying motifs; (II) various amino acid classifications can exploit multi-aspect biological information from the protein sequence. Finally, we combine all the spectrum kernels by simple addition into one single kernel called SpectrumKernel+ for protein subnuclear localization. RESULTS: We conduct the performance evaluation experiments on two benchmark datasets: Lei and Nuc-PLoc. Experimental results show that SpectrumKernel+ achieves substantial performance improvement against the previous model Nuc-PLoc, with overall accuracy 83.47% against 67.4%; and 71.23% against 50% of Lei SVM Ensemble, against 66.50% of Lei GO SVM Ensemble. CONCLUSION: The method SpectrumKernel+ can exploit rich amino acid information of protein sequence by embedding into implicit size-varying motifs the multi-aspect amino acid physiochemical properties captured by amino acid classification approaches. The kernels derived from diverse amino acid classification approaches and different sizes of k-mer are summed together for data integration. Experiments show that the method SpectrumKernel+ significantly outperforms the existing models for protein subnuclear localization.
Subject(s)
Amino Acids/classification , Proteins/analysis , Proteomics/methods , Amino Acid Sequence , Databases, Protein , Protein Conformation , Proteins/classification , Sequence Analysis, ProteinABSTRACT
Pathogen-host protein interactions are fundamental for pathogens to manipulate host signaling pathways and subvert host immune defense. For most pathogens, very few or no experimental studies have been conducted to investigate their signaling cross-talks with host. In this study, we propose a computational framework to validate the biological assumption that human protein-protein interaction (PPI) networks alone are sufficient to infer pathogen-host PPIs via pathogen functional mimicry. Pathogen functional mimicry assumes that a pathogen functionally mimics and substitutes host counterpart proteins in order for the pathogen to get involved in or hijack the host cellular processes. Through pathogen functional mimicry defined via gene ontology (GO) semantic similarity, we first use the known human PPIs as templates to infer pathogen-host PPIs, and the PPIs are further used as training data to build an l2-regularized logistic regression model for novel pathogen-host PPI prediction. Independent tests on the experimental data from human immunodeficiency virus and Francisella tularensis validate the effectiveness of the proposed pathogen functional mimicry technique. Performance comparisons also show that the proposed technique y excels the existing pathogen sequence mimicry approaches and transfer learning methods. The proposed framework provides a new avenue to study the experimentally less-studied pathogens in the worst scenarios that very few or no experimental pathogen-host PPIs are available. As two case studies, we apply the proposed framework to Salmonella typhimurium and Human respiratory syncytial virus to reconstruct the pathogen-host PPI networks and further investigate the interference of these two pathogens with human immune signaling and transcription regulatory system.
ABSTRACT
Drug repurposing plays an important role in screening old drugs for new therapeutic efficacy. The existing methods commonly treat prediction of drug-target interaction as a problem of binary classification, in which a large number of randomly sampled drug-target pairs accounting for over 50% of the entire training dataset are necessarily required. Such a large number of negative examples that do not come from experimental observations inevitably decrease the credibility of predictions. In this study, we propose a multi-label learning framework to find new uses for old drugs and discover new drugs for known target genes. In the framework, each drug is treated as a class label and its target genes are treated as the class-specific training data to train a supervised learning model of l2-regularized logistic regression. As such, the inter-drug associations are explicitly modelled into the framework and all the class-specific training data come from experimental observations. In addition, the data constraint is less demanding, for instance, the chemical substructures of a drug are no longer needed and the novel target genes are inferred only from the underlying patterns of the known genes targeted by the drug. Stratified multi-label cross-validation shows that 84.9% of known target genes have at least one drug correctly recognized, and the proposed framework correctly recognizes 86.73% of the independent test drug-target interactions (DTIs) from DrugBank. These results show that the proposed framework could generalize well in the large drug/class space without the information of drug chemical structures and target protein structures. Furthermore, we use the trained model to predict new drugs for the known target genes, identify new genes for the old drugs, and infer new associations between old drugs and new disease phenotypes via the OMIM database. Gene ontology (GO) enrichment analyses and the disease associations reported in recent literature provide supporting evidences to the computational results, which potentially shed light on new clinical therapies for new and/or old disease phenotypes.
ABSTRACT
Understanding the physical arrangement of subunits within protein complexes potentially provides valuable clues about how the subunits work together and how the complexes function. The majority of recent research focuses on identifying protein complexes as a whole and seldom studies the inner structures within complexes. In this study, we propose a computational framework to predict direct contacts and substructures within protein complexes. In this framework, we first train a supervised learning model of l2-regularized logistic regression to learn the patterns of direct and indirect interactions within complexes, from where physical subunit interaction networks are predicted. Then, to infer substructures within complexes, we apply a graph clustering method (i.e., maximum modularity clustering (MMC)) and a gene ontology (GO) semantic similarity based functional clustering on partially- and fully-connected networks, respectively. Computational results show that the proposed framework achieves fairly good performance of cross validation and independent test in terms of detecting direct contacts between subunits. Functional analyses further demonstrate the rationality of partitioning the subunits into substructures via the MMC algorithm and functional clustering.
Subject(s)
Models, Theoretical , Protein Interaction Maps , Algorithms , Cluster Analysis , Gene Ontology , HumansABSTRACT
Recognition of indirect interactions is instrumental to in silico reconstruction of signaling pathways and sheds light on the exploration of unknown physical paths between two indirectly interacting genes. However, very limited computational methods have explicitly exploited the indirect interactions with experimental evidence thus far. In this work, we attempt to distinguish direct versus indirect interactions in human functional protein-protein interaction (PPI) networks via a predictive l2-regularized logistic regression model built on the experimental data. The l2-regularized logistic regression method is adopted to counteract the potential homolog noise and reduce the computational complexity on large training data. Computational results show that the proposed model demonstrates promising performance even though the training data are highly skewed. From the 304 799 PPIs that are curated in several databases, the proposed method detects 23 131 indirect interactions, most of which have been verified by the breadth-first graph search algorithm to find dozens of physical paths between the interacting partners. Pathway enrichment analysis shows that most of the physical paths can be mapped onto more than one human signaling pathway, indicating that there do exist a series of biochemical signals between the two indirectly interacting genes. The interactome-scale computational results promise to provide useful cues to the following applications: (1) exploration of unknown physical PPIs or physical paths between two indirectly interacting genes; (2) amending or extending the existing signaling pathways; (3) recognition of the physical PPIs for druggable target discovery.
Subject(s)
Protein Interaction Maps , Algorithms , Computational Biology , Computer Simulation , Databases, Protein , Gene Ontology , Humans , Logistic Models , Models, Biological , Protein Interaction Maps/genetics , Signal TransductionABSTRACT
Protein-protein interaction (PPI) networks are naturally viewed as infrastructure to infer signalling pathways. The descriptors of signal events between two interacting proteins such as upstream/downstream signal flow, activation/inhibition relationship and protein modification are indispensable for inferring signalling pathways from PPI networks. However, such descriptors are not available in most cases as most PPI networks are seldom semantically annotated. In this work, we extend â2-regularized logistic regression to the scenario of multi-label learning for predicting the activation/inhibition relationships in human PPI networks. The phenomenon that both activation and inhibition relationships exist between two interacting proteins is computationally modelled by multi-label learning framework. The problem of GO (gene ontology) sparsity is tackled by introducing the homolog knowledge as independent homolog instances. â2-regularized logistic regression is accordingly adopted here to penalize the homolog noise and to reduce the computational complexity of the double-sized training data. Computational results show that the proposed method achieves satisfactory multi-label learning performance and outperforms the existing phenotype correlation method on the experimental data of Drosophila melanogaster. Several predictions have been validated against recent literature. The predicted activation/inhibition relationships in human PPI networks are provided in the supplementary file for further biomedical research.
Subject(s)
Computational Biology/methods , Proteins/metabolism , Algorithms , Brain-Derived Neurotrophic Factor/chemistry , Brain-Derived Neurotrophic Factor/metabolism , Databases, Protein , Gene Ontology , Humans , Interleukins/chemistry , Interleukins/metabolism , Logistic Models , Protein Interaction Maps , Proteins/chemistry , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Signal TransductionABSTRACT
Epstein-Barr virus (EBV) plays important roles in the origin and the progression of human carcinomas, e.g. diffuse large B cell tumors, T cell lymphomas, etc. Discovering EBV targeted human genes and signaling pathways is vital to understand EBV tumorigenesis. In this study we propose a noise-tolerant homolog knowledge transfer method to reconstruct functional protein-protein interactions (PPI) networks between Epstein-Barr virus and Homo sapiens. The training set is augmented via homolog instances and the homolog noise is counteracted by support vector machine (SVM). Additionally we propose two methods to define subcellular co-localization (i.e. stringent and relaxed), based on which to further derive physical PPI networks. Computational results show that the proposed method achieves sound performance of cross validation and independent test. In the space of 648,672 EBV-human protein pairs, we obtain 51,485 functional interactions (7.94%), 869 stringent physical PPIs and 46,050 relaxed physical PPIs. Fifty-eight evidences are found from the latest database and recent literature to validate the model. This study reveals that Epstein-Barr virus interferes with normal human cell life, such as cholesterol homeostasis, blood coagulation, EGFR binding, p53 binding, Notch signaling, Hedgehog signaling, etc. The proteome-wide predictions are provided in the supplementary file for further biomedical research.
Subject(s)
Computer Simulation , Databases, Nucleic Acid , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Signal Transduction/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , HumansABSTRACT
Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification wherein negative data sampling is still an open problem to be addressed. The commonly used random sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile rational constraints are seldom exerted on model selection to reduce the risk of false positive predictions for most of the existing computational methods. In this work, we propose a novel negative data sampling method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein interactions between HTLV retrovirus and Homo sapiens, wherein one-class SVM is used to choose reliable and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive feedback for rational model selection. Computational results suggest that one-class SVM is more suited to be used as negative data sampling method than two-class PPI predictor, and the predictive feedback constrained model selection helps to yield a rational predictive model that reduces the risk of false positive predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis of HTLV retrovirus.