Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Mol Cell ; 80(3): 452-469.e9, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33157015

ABSTRACT

Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.


Subject(s)
RNA-Binding Proteins/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/genetics , Alternative Splicing , Animals , Cell Cycle Proteins/metabolism , Exons , Gene Expression Profiling/methods , Genes, Tumor Suppressor , Humans , Liver Neoplasms/genetics , Male , Mice , Mice, Inbred ICR , Mice, SCID , RNA Interference , RNA Splicing , RNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism
2.
Cell ; 145(4): 571-83, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21565614

ABSTRACT

The molecular basis for p53-mediated tumor suppression remains unclear. Here, to elucidate mechanisms of p53 tumor suppression, we use knockin mice expressing an allelic series of p53 transcriptional activation mutants. Microarray analysis reveals that one mutant, p53(25,26), is severely compromised for transactivation of most p53 target genes, and, moreover, p53(25,26) cannot induce G(1)-arrest or apoptosis in response to acute DNA damage. Surprisingly, p53(25,26) retains robust activity in senescence and tumor suppression, indicating that efficient transactivation of the majority of known p53 targets is dispensable for these pathways. In contrast, the transactivation-dead p53(25,26,53,54) mutant cannot induce senescence or inhibit tumorigenesis, like p53 nullizygosity. Thus, p53 transactivation is essential for tumor suppression but, intriguingly, in association with a small set of novel p53 target genes. Together, our studies distinguish the p53 transcriptional programs involved in acute DNA-damage responses and tumor suppression-a critical goal for designing therapeutics that block p53-dependent side effects of chemotherapy without compromising p53 tumor suppression.


Subject(s)
DNA Repair , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Cell Cycle , Cellular Senescence , DNA Damage , Gene Knock-In Techniques , Humans , Mice , Mutation , Neoplasms/metabolism , Protein Structure, Tertiary , Transcriptional Activation , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics
3.
Proc Natl Acad Sci U S A ; 120(10): e2211937120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848578

ABSTRACT

The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.


Subject(s)
Pancreatic Neoplasms , Precancerous Conditions , Humans , Animals , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Pancreatic Neoplasms/genetics , Pancreas , Metaplasia , Mice, Knockout
4.
PLoS Genet ; 19(8): e1010904, 2023 08.
Article in English | MEDLINE | ID: mdl-37639465

ABSTRACT

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.


Subject(s)
Circadian Rhythm , Neoplasms , Proto-Oncogene Proteins c-myc , Humans , Amino Acids/metabolism , Cell Line , Cell Membrane , Metabolomics , Neoplasms/genetics , Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism
5.
Circ Res ; 133(3): 271-287, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37409456

ABSTRACT

BACKGROUND: Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure. METHODS: We used the Tcf21 (transcription factor 21)MerCreMer mouse line for fibroblast-specific lineage tracing and p53 (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction. RESULTS: Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed p53 null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, Cdkn2a (cyclin-dependent kinase inhibitor 2a) expression and the p16Ink4a-retinoblastoma cell cycle control pathway is induced in p53 null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation. CONCLUSIONS: This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.


Subject(s)
Cicatrix , Heart Ventricles , Mice , Animals , Heart Ventricles/pathology , Cicatrix/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Fibrosis , Fibroblasts/metabolism , Cell Proliferation , Myocardium/metabolism
6.
Genes Dev ; 31(11): 1095-1108, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28698299

ABSTRACT

The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1-/- mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.


Subject(s)
Cell Transformation, Neoplastic/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Pancreatic Ductal/physiopathology , Cells, Cultured , DNA Repair/genetics , Fibroblasts/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , Humans , Mice
7.
bioRxiv ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-36711638

ABSTRACT

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.

8.
Cell Rep ; 40(9): 111253, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36044839

ABSTRACT

Activating KRAS mutations and functional loss of members of the SWI/SNF complex, including ARID1A, are found together in the primary liver tumor cholangiocarcinoma (CC). How these mutations cooperate to promote CC has not been established. Using murine models of hepatocyte and biliary-specific lineage tracing, we show that Kras and Arid1a mutations drive the formation of CC and tumor precursors from the biliary compartment, which are accelerated by liver inflammation. Using cultured cells, we find that Arid1a loss causes cellular proliferation, escape from cell-cycle control, senescence, and widespread changes in chromatin structure. Notably, we show that the biliary proliferative response elicited by Kras/Arid1a cooperation and tissue injury in CC is caused by failed engagement of the TGF-ß-Smad4 tumor suppressor pathway. We thus identify an ARID1A-TGF-ß-Smad4 axis as essential in limiting the biliary epithelial response to oncogenic insults, while its loss leads to biliary pre-neoplasia and CC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Mice , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
9.
Nat Commun ; 12(1): 4308, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262028

ABSTRACT

Hypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer.


Subject(s)
Breast Neoplasms/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-11/metabolism , MafF Transcription Factor/metabolism , Nuclear Proteins/metabolism , STAT3 Transcription Factor/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Hypoxia , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , MafF Transcription Factor/genetics , Mice , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Nuclear Proteins/genetics , Prognosis , Signal Transduction , Transcription, Genetic
10.
Mol Cancer Res ; 18(10): 1534-1544, 2020 10.
Article in English | MEDLINE | ID: mdl-32561656

ABSTRACT

Soft-tissue sarcomas (STS) are rare malignancies showing lineage differentiation toward diverse mesenchymal tissues. Half of all high-grade STSs develop lung metastasis with a median survival of 15 months. Here, we used a genetically engineered mouse model that mimics undifferentiated pleomorphic sarcoma (UPS) to study the molecular mechanisms driving metastasis. High-grade sarcomas were generated with Cre recombinase technology using mice with conditional mutations in Kras and Trp53 (KP) genes. After amputation of the limb bearing the primary tumor, mice were followed for the development of lung metastasis. Using RNA-sequencing of matched primary KP tumors and lung metastases, we found that the long noncoding RNA (lncRNA) Nuclear Enriched Abundant Transcript 1 (Neat1) is significantly upregulated in lung metastases. Furthermore, NEAT1 RNA ISH of human UPS showed that NEAT1 is upregulated within a subset of lung metastases compared with paired primary UPS. Remarkably, CRISPR/Cas9-mediated knockout of Neat1 suppressed the ability of KP tumor cells to colonize the lungs. To gain insight into the underlying mechanisms by which the lncRNA Neat1 promotes sarcoma metastasis, we pulled down Neat1 RNA and used mass spectrometry to identify interacting proteins. Interestingly, most Neat1 interacting proteins are involved in RNA splicing regulation. In particular, KH-Type Splicing Regulatory Protein (KHSRP) interacts with Neat1 and is associated with poor prognosis of human STS. Moreover, depletion of KHSRP suppressed the ability of KP tumor cells to colonize the lungs. Collectively, these results suggest that Neat1 and its interacting proteins, which regulate RNA splicing, are involved in mediating sarcoma metastasis. IMPLICATIONS: Understanding that lncRNA NEAT1 promotes sarcoma metastasis, at least in part, through interacting with the RNA splicing regulator KHSRP may translate into new therapeutic approaches for sarcoma.


Subject(s)
RNA Splicing/genetics , RNA, Long Noncoding/genetics , Sarcoma/genetics , Humans , Neoplasm Metastasis , PC-3 Cells , Transfection
12.
Curr Opin Cell Biol ; 51: 65-72, 2018 04.
Article in English | MEDLINE | ID: mdl-29195118

ABSTRACT

The p53 transcription factor is mutated in over half of human cancers, and p53-null mice are highly predisposed to cancer, highlighting p53s essential role in tumor suppression. Studies in mouse models have revealed that p53 cell cycle arrest and apoptosis responses to acute DNA damage signals are dispensable for tumor suppression, prompting a search for new mechanisms underlying p53-mediated cancer suppression. p53 responds to other types of stress signals and regulates a host other cellular processes, including maintenance of genomic stability, metabolism, stemness, non-apoptotic cell death, migration/invasion, and cell signaling, any or all of which could be fundamental for suppressing carcinogenesis. The ability of p53 to govern numerous transcriptional programs and cellular functions likely explains its potent tumor suppressor activity.


Subject(s)
DNA Damage/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Humans , Mice , Signal Transduction
13.
J Clin Invest ; 128(12): 5307-5321, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30371505

ABSTRACT

After the initial responsiveness of triple-negative breast cancers (TNBCs) to chemotherapy, they often recur as chemotherapy-resistant tumors, and this has been associated with upregulated homology-directed repair (HDR). Thus, inhibitors of HDR could be a useful adjunct to chemotherapy treatment of these cancers. We performed a high-throughput chemical screen for inhibitors of HDR from which we obtained a number of hits that disrupted microtubule dynamics. We postulated that high levels of the target molecules of our screen in tumors would correlate with poor chemotherapy response. We found that inhibition or knockdown of dynamin 2 (DNM2), known for its role in endocytic cell trafficking and microtubule dynamics, impaired HDR and improved response to chemotherapy of cells and of tumors in mice. In a retrospective analysis, levels of DNM2 at the time of treatment strongly predicted chemotherapy outcome for estrogen receptor-negative and especially for TNBC patients. We propose that DNM2-associated DNA repair enzyme trafficking is important for HDR efficiency and is a powerful predictor of sensitivity to breast cancer chemotherapy and an important target for therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Dynamins/metabolism , Recombinational DNA Repair , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology , Animals , CHO Cells , Cricetulus , Dynamin II , Dynamins/genetics , Female , Humans , Mice , Mice, Nude , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
14.
Radiat Res ; 168(6): 650-65, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18088177

ABSTRACT

The molecular mechanisms underlying responses to low radiation doses are still unknown, especially in normal lymphocytes, despite the evidence suggesting specific changes that may characterize cellular responses. Our purpose was to analyze gene expression profiles by DNA microarrays in human lymphocytes after in vitro irradiation (10, 25 and 50 cGy) with gamma rays. A cytogenetic analysis was also carried out for different radiation doses. G 0 lymphocytes were irradiated and induced to proliferate for 48 h; then RNA samples were collected for gene expression analysis. ANOVA was applied to data obtained in four experiments with four healthy donors, followed by SAM analysis and hierarchical clustering. For 10, 25 and 50 cGy, the numbers of significantly (FDR or=10 cGy (total aberrations) and >or=50 cGy (dicentrics/ rings). Therefore, low to moderate radiation doses induced qualitative and/or quantitative differences and similarities in transcript profiles, reflecting the type and extent of DNA lesions. The main biological processes associated with modulated genes were metabolism, stress response/DNA repair, cell growth/differentiation, and transcription regulation. The results indicate a potential risk to humans regarding the development of genetic instability and acquired diseases.


Subject(s)
Gamma Rays , Gene Expression Profiling , Gene Expression Regulation/radiation effects , Lymphocytes/metabolism , Lymphocytes/radiation effects , Adult , Cells, Cultured , Chromosome Aberrations/radiation effects , Humans
15.
Ann N Y Acad Sci ; 1110: 33-46, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17911418

ABSTRACT

Consensus gene expression profiling by meta-analysis of 4,500 cDNA sequence microarray data obtained from patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) was assembled and systematically analyzed. The normalized data were statistically analyzed by the significance analysis of microarray (SAM) program (false discovery rate

Subject(s)
Arthritis, Rheumatoid/genetics , Gene Expression Profiling , Gene Expression Regulation/genetics , Lupus Erythematosus, Systemic/genetics , Adult , Aged , Animals , Arthritis, Rheumatoid/classification , Female , Humans , Lupus Erythematosus, Systemic/classification , Male , Middle Aged , Oligonucleotide Array Sequence Analysis
16.
Mol Immunol ; 43(5): 464-72, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16337489

ABSTRACT

In this study, we observed the occurrence of TRBV8.1-DB2.1 V(D)J recombination in murine fetal thymus organ culture (FTOC), in which the thymic microenvironment is mimicked. Since ionizing radiation affects T-cell development, we irradiated FTOCs with gamma rays to evaluate the modulation of genes implicated in TRBV8.1-BD2.1 rearrangements. The nylon cDNA microarray method was employed to monitor the expression of 9216 genes, which were organized in coexpression clusters. Clustering analysis showed similar expression profiling of genes implicated in the V(D)J recombination and DNA double strand break (DSB) repair processes such as XRCC4, RAG-2, Artemis and DNA-PK-cs, thus suggesting overlap between the two processes. The RUNX3 gene, whose coded protein binds to the enhancers of TR genes, was also modulated and the DNA cross-linking LR1 gene, which plays a role in the opening of hairpin DNA structures and whose expression pattern is similar to Artemis, may play a role in the control of V(D)J recombination. Furthermore, our data demonstrate that the FTOC model system and cDNA microarray method are useful tools to evidentiate genes that may play a role in both processes V(D)J recombination and DNA repair.


Subject(s)
DNA Repair/genetics , Gene Expression Profiling , Thymus Gland/radiation effects , VDJ Recombinases/metabolism , Animals , Cell Differentiation , Cluster Analysis , DNA, Complementary/genetics , Gamma Rays , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , Mice , Mice, Inbred BALB C , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Organ Culture Techniques , Polymerase Chain Reaction/methods , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/cytology , T-Lymphocytes/radiation effects , Thymus Gland/embryology , Thymus Gland/metabolism
17.
Cancer Cell ; 32(4): 460-473.e6, 2017 10 09.
Article in English | MEDLINE | ID: mdl-29017057

ABSTRACT

The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.


Subject(s)
Nuclear Proteins/physiology , Pancreatic Neoplasms/genetics , Protein Tyrosine Phosphatases, Non-Receptor/physiology , Transcription Factors/physiology , Tumor Suppressor Protein p53/physiology , Animals , Cell Cycle Proteins , Cell Proliferation , Cell Transformation, Neoplastic , Gene Expression Profiling , Humans , Mice , Mutation , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/prevention & control , Signal Transduction
18.
Autoimmun Rev ; 5(5): 319-23, 2006 May.
Article in English | MEDLINE | ID: mdl-16782556

ABSTRACT

Systemic lupus erythematosus (SLE) is a prototype of autoimmune disease which arises from interactions between susceptibility genes and environmental factors. Despite the heterogeneous manifestations in this disease, all SLE patients present plasma autoantibodies recognizing nuclear components. Thus, auto reactive B cells represent key effectors to be investigated. Human linkage analysis is providing the localization of susceptibility loci distributed in chromosomes contributing to elucidate the manner in which interactions between these loci mediate SLE pathogenesis. We associate the cDNA microarray technology to investigate the differential gene expression of CD19(+) B cells with genetic linkage data. Bioinformatics programs served to evidentiate the differentially expressed sequences and the design of the microarray allowed hierarchical clustering of patients and controls. Sequencing allowed the identification of 8 new gene products differentially expressed (ESTs) that were co-localized in SLE or other autoimmune diseases susceptibility loci on chromosome 1p21, 2q21, 13q33, 16p12.1 and 16q12.1. These findings strongly suggest that chromosomal regions previously identified as SLE susceptibility loci are in fact transcribed in CD19(+) B cells of patients. In this review, we delineate a new possibility for the use of cDNA microarrays in studies focusing the control of gene expression of disease susceptibility loci identified by genetic linkage.


Subject(s)
Antigens, CD19/genetics , Lupus Erythematosus, Systemic/genetics , Oligonucleotide Array Sequence Analysis/methods , Antigens, CD19/immunology , Gene Expression , Genetic Linkage , Genetic Predisposition to Disease , Humans , Lupus Erythematosus, Systemic/immunology
19.
Ann N Y Acad Sci ; 1079: 305-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17130570

ABSTRACT

We have previously identified 30 differentially expressed genes when comparing recently diagnosed type 1 diabetes mellitus (DM-1) patients and controls paired for sex, age, and ethnic background. In this article we performed the hierarchical clustering of these genes taking into account the human-leukocyte-antigen (HLA)-DRB1/DQB1 profile. The dendrogram obtained using the Cluster program grouped patients and controls into three clusters, one including individuals with no susceptibility alleles, another including individuals with at least three susceptibility alleles, and a third intermingling susceptibility/protective alleles. In addition to other variables, the results of the present article suggest that the major histocompatibility complex (MHC) class II profile may be of relevance for the study of a large-scale differentially expressed genes.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Gene Expression , Histocompatibility Antigens Class II/genetics , Algorithms , Alleles , Case-Control Studies , Child , Cluster Analysis , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/immunology , Female , HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Humans , Male , Metabolism/genetics , Oligonucleotide Array Sequence Analysis
20.
Mol Immunol ; 42(9): 1043-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15829294

ABSTRACT

Non-manipulated inbred mouse strains constitutes an interesting model-system for in vivo studies on thymus ontogeny due to the possibility to observe the molecular events of the thymocyte maturation. In previous studies, using RT-PCR method, we have found that several immune system genes such as interleukins and MHC are differentially expressed during ontogeny of the thymus whose genes act as modulators of T-cell differentiation. To determine which other genes are modulated on a large-scale basis, we measured the levels of mRNA expression in mouse fetal thymus (14-17 days of gestation) by hybridization with cDNA microarrays containing 1,576 cDNA sequences derived from the IMAGE MTB library. T-cell maturation was monitored by detection of the T-cell receptor beta TRBV8.1-BD2.1 rearranged DNA segment. Each developmental phase of thymus, displayed a characteristic expression profile, as evaluated by the Cluster and Tree-View softwares. Genes differentially and significantly expressed were selected on the basis of significance analysis of the microarray data (SAM program). With the reclustering of only significantly expressed genes, it was possible to characterize the phases of thymus ontogeny, based on the differential profile of expression. Our method provided the detection of genes implicated in the cell signaling, such as the hematopoietic cell signal transducer gene, genes implicated in T-cell calcium influx (tyrosine phosphatase) and calcium signaling proteins (vesicle transport binding protein 3, proline rich Gla, casein kinase alpha 1 and Down syndrome homolog protein 1) and a gene important for the protein transport, including T-cell receptors chains, towards the cell membrane (Golgi SNAP receptor complex member 2). The results demonstrate that the cDNA microarray used to explore the gene expression was useful for understanding the modulation of several cell-signaling genes, including the calcium cascade pathway, which is important for individual stages of T-cell maturation and control of anergy during thymus ontogeny.


Subject(s)
Gene Expression Regulation, Developmental , Genes, T-Cell Receptor beta , Hybridization, Genetic , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Animals , Gene Expression Profiling , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombination, Genetic , T-Lymphocytes/cytology , Thymus Gland/cytology , Thymus Gland/embryology
SELECTION OF CITATIONS
SEARCH DETAIL