Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Biotechnol Bioeng ; 117(6): 1710-1723, 2020 06.
Article in English | MEDLINE | ID: mdl-32159221

ABSTRACT

The timely delivery of the most up-to-date medicines and drug products is essential for patients throughout the world. Successful scaling of the bioreactors used within the biopharmaceutical industry plays a large part in the quality and time to market of these products. Scale and topology differences between vessels add a large degree of complication and uncertainty within the scaling process. Currently, this approach is primarily achieved through extensive experimentation and facile empirical correlations, which can be costly and time consuming while providing limited information. The work undertaken in the current study demonstrates a more robust and complete approach using computational fluid dynamics (CFD) to provide potent multiparameter scalability, which only requires geometric and material properties before a comprehensive and detailed solution can be generated. The CFD model output parameters that can be applied in the scale-up include mass transfer rates, mixing times, shear rates, gas hold-up values, and bubble residence times. The authors examined three bioreactors with variable geometries and were able to validate them based on single-phase and multiphase experiments. Furthermore, leveraging the resulting CFD output information enabled the authors to successfully scale-up from a known 2kL to a novel and disparate 5kL single-use bioreactor in the first attempted cell culture. This multiparameter scaling approach promises to ultimately lead to a reduction in the time to market providing patients with earlier access to the most groundbreaking medicines.


Subject(s)
Bioreactors , Heuristics , Hydrodynamics , Animals , CHO Cells , Cell Culture Techniques/methods , Computer Simulation , Cricetulus , Humans , Models, Biological
2.
Plant Biotechnol J ; 9(5): 618-28, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21535357

ABSTRACT

Human transforming growth factor-ß3 (TGFß3) is a new therapeutic protein used to reduce scarring during wound healing. The active molecule is a nonglycosylated, homodimer comprised of 13-kDa polypeptide chains linked by disulphide bonds. Expression of recombinant human TGFß3 in chloroplasts and its subsequent purification would provide a sustainable source of TGFß3 free of animal pathogens. A synthetic sequence (33% GC) containing frequent chloroplast codons raised accumulation of the 13-kDa TGFß3 polypeptide by 75-fold compared to the native coding region (56% GC) when expressed in tobacco chloroplasts. The 13-kDa TGFß3 monomer band was more intense than the RuBisCO 15-kDa small subunit on Coomassie blue-stained SDS-PAGE gels. TGFß3 accumulated in insoluble aggregates and was stable in leaves of different ages but was not detected in seeds. TGFß3 represented 12% of leaf protein and appeared as monomer, dimer and trimer bands on Western blots of SDS-PAGE gels. High yield and insolubility facilitated initial purification and refolding of the 13-kDa polypeptide into the TGFß3 homodimer recognized by a conformation-dependent monoclonal antibody. The TGFß3 homodimer and trace amounts of monomer were the only bands visible on silver-stained gels following purification by hydrophobic interaction chromatography and cation exchange chromatography. N-terminal sequencing and electronspray ionization mass spectrometry showed the removal of the initiator methionine and physical equivalence of the chloroplast-produced homodimer to standard TGFß3. Functional equivalence was demonstrated by near-identical dose-response curves showing the inhibition of mink lung epithelial cell proliferation. We conclude that chloroplasts are an attractive production platform for synthesizing recombinant human TGFß3.


Subject(s)
Chloroplasts/genetics , Chloroplasts/metabolism , Genes, Synthetic , Transforming Growth Factor beta3/biosynthesis , Transforming Growth Factor beta3/chemistry , Base Sequence , Gene Expression Regulation, Plant , Humans , Molecular Sequence Data , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Conformation , Protein Engineering/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Nicotiana/genetics , Nicotiana/metabolism , Transformation, Genetic , Transforming Growth Factor beta3/genetics , Transforming Growth Factor beta3/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL