ABSTRACT
Isoprenol (3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals. Biological production of isoprenol via the mevalonate pathway has been developed and optimized extensively in Escherichia coli, but high ATP requirements and isopentenyl diphosphate (IPP) toxicity have made it difficult to achieve high titer, yield, and large-scale production. To overcome these limitations, an IPP-bypass pathway was previously developed using the promiscuous activity of diphosphomevalonate decarboxylase, and enabled the production of isoprenol at a comparable yield and titer to the original pathway. In this study, we optimized this pathway, substantially improving isoprenol production. A titer of 3.7â¯g/L (0.14â¯g isoprenol per g glucose) was achieved in batch conditions using minimal medium by pathway optimization, and a further optimization of the fed-batch fermentation process enabled an isoprenol titer of 10.8â¯g/L (yield of 0.105â¯g/g and maximum productivity of 0.157â¯gâ¯L-1 h-1), which is the highest reported titer for this compound. The substantial increase in isoprenol titer via the IPP-bypass pathway in this study will facilitate progress toward commercialization.
Subject(s)
Batch Cell Culture Techniques , Escherichia coli , Hemiterpenes , Metabolic Engineering , Mevalonic Acid/metabolism , Organophosphorus Compounds , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hemiterpenes/genetics , Hemiterpenes/metabolism , Organophosphorus Compounds/metabolismABSTRACT
Monoterpenes (C10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes. Biotechnol. Bioeng. 2017;114: 1703-1712. © 2017 Wiley Periodicals, Inc.
Subject(s)
Diphosphates/metabolism , Diterpenes/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/physiology , Genetic Enhancement/methods , Geranyltranstransferase/genetics , Hydrocarbons/chemical synthesis , Monoterpenes/metabolism , Polyisoprenyl Phosphates/metabolism , Sesquiterpenes/metabolism , Monoterpenes/chemistry , Mutation/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolismABSTRACT
The marine cyanobacterium Synechococcus sp. strain PCC 7002 synthesizes two alkenes, 1-nonadecene and 1,14-nonadecadiene. Whereas the genetic basis for the biosynthesis of the terminal double bond in both alkenes has been characterized, the origin of the internal double bond in 1,14-nonadecadiene has not. In this study, we demonstrate that a gene encoding an uncharacterized desaturase is involved in the formation of the internal double bond of 1,14-nonadecadiene. Further, at low temperatures, the desaturase gene is essential for growth, and in wild-type cells the levels of 1,14-nonadecadiene increase relative to that of cells grown at 38°C. These data suggest that 1,14-nonadecadiene plays a role in responding to cold stress.
Subject(s)
Alkenes/metabolism , Gene Expression Regulation, Bacterial , Oxidoreductases/genetics , Synechococcus/enzymology , Alkenes/analysis , Alkenes/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Cold Temperature , DNA Primers/genetics , Gene Expression Regulation, Enzymologic , Lipids/analysis , Oxidoreductases/metabolism , Sequence Deletion , Stress, Physiological , Synechococcus/chemistry , Synechococcus/genetics , Synechococcus/physiologyABSTRACT
BACKGROUND: Advanced spark ignition engines require high performance fuels with improved resistance to autoignition. Biologically derived olefinic alcohols have arisen as promising blendstock candidates due to favorable octane numbers and synergistic blending characteristics. However, production and downstream separation of these alcohols are limited by their intrinsic toxicity and high aqueous solubility, respectively. Bioproduction of carboxylate esters of alcohols can improve partitioning and reduce toxicity, but in practice has been limited to saturated esters with characteristically low octane sensitivity. If olefinic esters retain the synergistic blending characteristics of their alcohol counterparts, they could improve the bioblendstock combustion performance while also retaining the production advantages of the ester moiety. RESULTS: Optimization of Escherichia coli isoprenoid pathways has led to high titers of isoprenol and prenol, which are not only excellent standalone biofuel and blend candidates, but also novel targets for esterification. Here, a selection of olefinic esters enhanced blendstock performance according to their degree of unsaturation and branching. E. coli strains harboring optimized mevalonate pathways, thioester pathways, and heterologous alcohol acyltransferases (ATF1, ATF2, and SAAT) were engineered for the bioproduction of four novel olefinic esters. Although prenyl and isoprenyl lactate titers were limited to 1.48 ± 0.41 mg/L and 5.57 ± 1.36 mg/L, strains engineered for prenyl and isoprenyl acetate attained titers of 176.3 ± 16.0 mg/L and 3.08 ± 0.27 g/L, respectively. Furthermore, prenyl acetate (20% bRON = 125.8) and isoprenyl acetate (20% bRON = 108.4) exhibited blend properties comparable to ethanol and significantly better than any saturated ester. By further scaling cultures to a 2-L bioreactor under fed-batch conditions, 15.0 ± 0.9 g/L isoprenyl acetate was achieved on minimal medium. Metabolic engineering of acetate pathway flux further improved titer to attain an unprecedented 28.0 ± 1.0 g/L isoprenyl acetate, accounting for 75.7% theoretical yield from glucose. CONCLUSION: Our study demonstrated novel bioproduction of four isoprenoid oxygenates for fuel blending. Our optimized E. coli production strain generated an unprecedented titer of isoprenyl acetate and when paired with its favorable blend properties, may enable rapid scale-up of olefinic alcohol esters for use as a fuel blend additive or as a precursor for longer-chain biofuels and biochemicals.
ABSTRACT
A major challenge to using heterologous expression in metabolic engineering experiments is the inability to quickly dissect experiments that have failed at the stage of translating mRNA. While many methods of detecting proteins exist, methods that detect untagged proteins at low levels are limited. Here, we describe a method to quickly determine whether Escherichia coli is capable of expressing the product of any target gene by coupling translation of a target gene to a detectable response gene. A translational coupling cassette was designed to encode a mRNA sequence that forms a secondary structure in the absence of translation and contains the translational start sequence of a detectable response gene. The translational coupling method was successfully tested with fluorescent proteins and antibiotic resistance markers. Only when the target gene was fully translated was the response observed. Further characterization demonstrated that translational coupling functions at both low and high levels of expression and that the response signal is proportional to the amount of target gene product. The translational coupling system was used to determine that a large multi-domain enzyme was not actively translated in E. coli, to isolate the translation problems to the C-terminal domains, and to optimize conditions for expressing a codon-optimized sequence variant.
Subject(s)
Escherichia coli Proteins/biosynthesis , Escherichia coli/metabolism , Metabolic Engineering/methods , Protein Biosynthesis , DNA/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression , Oligonucleotides/genetics , Plasmids/geneticsABSTRACT
The strategy of synergistic application of biological and chemical catalysis is an important approach for efficiently converting renewable biomass into chemicals and fuels. In particular, the method of determining the appropriate intermediate between the two catalytic methods is critical. In this work, we demonstrate p-cymene production through the integration of biosynthesis and heterogenous catalysis and show how a preferred biologically derived precursor could be determined. On the biological side, we performed the limonene and 1,8-cineole production through the mevalonate pathway. Titers of 0.605 g/L and a 1.052 g/L were achieved, respectively. This difference is in agreement with the toxicity of these compounds toward the producing microorganisms, which has implications for subsequent development of the microbial platform. On the heterogeneous catalysis side, we performed the reaction with both biological precursors to allow for direct comparison. Using hydrogenation/dehydrogenation metals on supports with acid sites, both limonene and 1,8-cineole were converted to p-cymene with similar yields under equivalent reaction conditions. Thus, we could determine that the most promising strategy would be to target 1,8-cineole, the higher titer and lower toxicity bio-derived precursor with subsequent catalytic conversion to p-cymene. We further optimized the biological production of 1,8-cineole via fed-batch fermentation and reached the titer of 4.37 g/L which is the highest known 1,8-cineole titer from microbial production. This work provides a valuable paradigm for early stage considerations to determine the best route for the high-efficiency production of a target biobased molecule using an integration of biology and chemistry.
ABSTRACT
A gene involved in the production of medium-chain α-olefins was identified in the cyanobacterium Synechococcus sp. strain PCC 7002. The gene encodes a large multidomain protein with homology to type I polyketide synthases, suggesting a route for hydrocarbon biosynthesis from fatty acids via an elongation decarboxylation mechanism.
Subject(s)
Alkenes/metabolism , Polyketide Synthases/genetics , Synechococcus/enzymology , Synechococcus/metabolism , Fatty Acids/metabolism , Gene Deletion , Polyketide Synthases/metabolism , Sequence Homology, Amino AcidABSTRACT
Climate change necessitates the development of CO2 neutral or negative routes to chemicals currently produced from fossil carbon. In this paper we demonstrate a pathway from the renewable resource glucose to next generation biofuel isopentanol by pairing the isovaleryl-CoA biosynthesis pathway from Myxococcus xanthus and a butyryl-CoA reductase from Clostridium acetobutylicum. The best plasmid and Escherichia coli strain combination makes 80.50 ± 8.08 (SD) mg/L of isopentanol after 36 h under microaerobic conditions with an oleyl alcohol overlay. In addition, the system also shows a strong preference for isopentanol production over prenol in microaerobic conditions. Finally, the pathway requires zero adenosine triphosphate and can be paired theoretically with nonoxidative glycolysis, the combination being redox balanced from glucose thus avoiding unnecessary carbon loss as CO2. These pathway properties make the isovaleryl-CoA pathway an attractive isopentanol production route for further optimization.
Subject(s)
Adenosine Triphosphate/metabolism , Biofuels , Carbon/metabolism , Myxococcus xanthus/metabolism , Pentanols/metabolism , Synthetic Biology/methods , Acyl Coenzyme A/metabolism , Clostridium acetobutylicum/enzymology , Clostridium acetobutylicum/genetics , Escherichia coli/genetics , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Models, Biological , Myxococcus xanthus/genetics , Plasmids/geneticsABSTRACT
Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources into a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e. binding selectivity). Here, we demonstrate this approach by identifying medium-chain (C6-C12) acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, products of thioesterase-catalyzed hydrolysis, are limited in natural abundance compared to long-chain fatty acids; the limited supply leads to high costs of C6-C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding to the highly-active 'TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12- or C8-specificity while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified three thioesterases with enhanced production of dodecanoic acid (C12) and twenty-seven thioesterases with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of 'TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of 'TesA variants suggest that hydrophobic forces govern 'TesA substrate specificity. We expect that the design rules we uncovered and the thioesterase variants identified will be useful to metabolic engineering projects aimed at sustainable production of medium-chain oleochemicals.
ABSTRACT
The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.