Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38982694

ABSTRACT

INTRODUCTION: Cancer is the major cause of morbidity and mortality worldwide. Current treatments for both solid and hematological tumors are associated with severe adverse effects and drug resistance, necessitating the development of novel selective antineoplastic drugs. METHODS: The present study describes the antitumor activity of the imidazacridine derivative 5-acridin-9-ylmethylidene-2-thioxoimidazolidin-4-one (LPSF/AC05) in breast cancer, leuke-mia, and lymphoma cells. Cytotoxicity assays were performed in PBMC and in breast cancer, leukemia, and lymphoma cell lines using the MTT method. Changes in cell cycle progression and apoptosis were assessed using flow cytometry. Moreover, topoisomerase II inhibition as-says were performed. LPSF/AC05 exhibited cytotoxicity in six of the nine cell lines tested. RESULTS: The best results for leukemia and lymphoma were observed in the Toledo, Jurkat, and Raji cell lines (IC50 = 27.18, 31.04, and 33.36 M, respectively). For breast cancer, the best re-sults were observed in the triple-negative cell line MDA-MB-231 (IC50 = 27.54 µM). The compound showed excellent selectivity, with no toxicity to normal human cells (IC50 > 100M; selectivity index > 3). Cell death was primarily induced by apoptosis in all cell lines. Furthermore, LPSF/AC05 treatmentinduced cell cycle arrest at the G0/G1 phase in leuke-mia/lymphoma and at the G2/M phase in breast cancer. CONCLUSION: Finally, topoisomerase II was inhibited. These results indicate the potential ap-plication of LPSF/AC05 in cancer therapy.

2.
Med Chem ; 18(9): 980-989, 2022.
Article in English | MEDLINE | ID: mdl-35249500

ABSTRACT

BACKGROUND: Oxazolidinones display several biological effects, including anticancer activity. The purpose of this present work was to investigate a series of novel oxazolidinone derivatives with potential antineoplastic activity. Their mechanisms of death induction and effects in the cell cycle were also evaluated. A molecular docking study was accomplished through proteins of the Cyclin-Dependent Kinases family (CDK). The new compound LPSF/NBM-2 was appeared to promote cell cycle arrest at the G2/M phase and increase the percentage of apoptotic cells. METHODS: Oxazolidinone derivatives were obtained through Knoevenagel condensation. The cytotoxic assay was evaluated through the MTT method. Moreover, flow cytometry was performed in order to investigate the effects of the new compounds on the cell cycle, induction of cell death, and apoptosis. A blind docking was performed through the SwissDock online server and the analysis of the results was performed using the UCSF Chimera and Biovia discovery studio software. RESULTS: LPSF/NBM-1 and LPSF/NBM-2 displayed the most cytotoxic activity against HL-60 (IC50 = 54.83 µM) and MOLT-4 (IC50 = 51.61 µM) cell lines. LPSF/NBM-2 showed an increased percentage of cell population at the G2/M phase. Molecular-docking results of LPSF/NBM-1 and LPSF/NBM-2 suggested a binding affinity with the evaluated CDK proteins. CONCLUSION: LPSF/NBM-1 and LPSF/NBM-2 displayed cytotoxic profiles against Hl-60 and MOLT-4. LPSF/NBM-2 increased cell population percentage at the G2/M phase and promoted cell death compared to non-treated cells in the MOLT-4 cell line. Based on these findings, oxazolidinone derivatives could be highlighted as possible cytostatic agents against lymphoma cells. Molecular docking results suggested the action of LPSF/NBM-1 and LPSF/NBM-2 compounds on enzymes of cyclin-dependent kinases family, however, more studies are needed to establish this correlation.


Subject(s)
Antineoplastic Agents , Oxindoles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL