Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Appl Mater Interfaces ; 16(27): 35063-35073, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38920108

ABSTRACT

The slow redox kinetics of lithium-sulfur batteries severely limit their application, and sulfur utilization can be effectively enhanced by designing different cathode sulfur host materials. Herein, we report the hollow porous nanofiber LaNi0.6Co0.4O3 as a bidirectional host material for lithium-sulfur batteries. After Co is substituted into LaNiO3, oxygen vacancies are generated to enhance the material conductivity and enrich the active sites of the material, and the electrochemical reaction rate can be further accelerated by the synergistic catalytic ability of Ni and Co elements in the B-site of the active site of LaNi0.6Co0.4O3. As illustrated by the kinetic test results, LaNi0.6Co0.4O3 effectively accelerated the interconversion of lithium polysulfides, and the nucleation of Li2S and the dissolution rate of Li2S were significantly enhanced, indicating that LaNi0.6Co0.4O3 accelerated the redox kinetics of the lithium-sulfur battery during the charging and discharging process. In the electrochemical performance test, the initial discharge specific capacity of S/LaNi0.6Co0.4O3 was 1140.4 mAh g-1 at 0.1 C, and it was able to release a discharge specific capacity of 584.2 mAh g-1 at a rate of 5 C. It also showed excellent cycling ability in the long cycle test, with a single-cycle capacity degradation rate of only 0.08%. Even under the harsh conditions of high loaded sulfur and low electrolyte dosage, S/LaNi0.6Co0.4O3 still delivers excellent specific capacity and excellent cycling capability. Therefore, this study provides an idea for the future development of bidirectional high-activity electrocatalysts for lithium-sulfur batteries.

2.
Front Plant Sci ; 13: 1087652, 2022.
Article in English | MEDLINE | ID: mdl-36684782

ABSTRACT

The increase of planting density is a dominant approach for the higher yield of maize. However, the stalks of some varieties are prone to lodging under high density conditions. Much research has been done on the evaluation of maize lodging resistance. But there are few comprehensive reports on the determination of maize lodging resistance in situ without injury under field conditions. This study introduces a non-destructive in situ tester to determine the lodging resistance of the different maize varieties in the field. The force value can be obtained by pulling the stalk to different angles with this instrument, which is used to evaluate the lodging resistance of maize varieties. From 2018 to 2020, a total of 1,172 sample plants from 113 maize varieties were tested for the lodging resistance of plants. The statistical results show that the values of force on maize plants at 45° inclination angles (F45) are appropriate to characterize maize lodging resistance in situ by nondestructive testing in the field. According to the F45 value, the maximum lodging resistance Fmax can be inferred. The formula is: Fmax =1.1354 F45 - 0.3358. The evaluation results of lodging resistance of different varieties of this study are basically consistent with the test results of three-point bending method, moving wind tunnel and other methods. Therefore, the F45 value is the optimal index for nondestructive evaluation of maize stalk-lodging resistance under the field-planting conditions.

SELECTION OF CITATIONS
SEARCH DETAIL