Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(3): 509-528, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38412861

ABSTRACT

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , Intellectual Disability/genetics , Intellectual Disability/complications , Haploinsufficiency/genetics , Neurodevelopmental Disorders/genetics , Brain/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
2.
Am J Hum Genet ; 109(11): 2049-2067, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36283406

ABSTRACT

Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Humans , Genome , Haploinsufficiency , MEF2 Transcription Factors/genetics , Neurons , Transcription, Genetic
3.
Hum Reprod ; 39(1): 258-274, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37873575

ABSTRACT

STUDY QUESTION: Does the diagnosis of mosaicism affect ploidy rates across different providers offering preimplantation genetic testing for aneuploidies (PGT-A)? SUMMARY ANSWER: Our analysis of 36 395 blastocyst biopsies across eight genetic testing laboratories revealed that euploidy rates were significantly higher in providers reporting low rates of mosaicism. WHAT IS KNOWN ALREADY: Diagnoses consistent with chromosomal mosaicism have emerged as a third category of possible embryo ploidy outcomes following PGT-A. However, in the era of mosaicism, embryo selection has become increasingly complex. Biological, technical, analytical, and clinical complexities in interpreting such results have led to substantial variability in mosaicism rates across PGT-A providers and clinics. Critically, it remains unknown whether these differences impact the number of euploid embryos available for transfer. Ultimately, this may significantly affect clinical outcomes, with important implications for PGT-A patients. STUDY DESIGN, SIZE, DURATION: In this international, multicenter cohort study, we reviewed 36 395 consecutive PGT-A results, obtained from 10 035 patients across 11 867 treatment cycles, conducted between October 2015 and October 2021. A total of 17 IVF centers, across eight PGT-A providers, five countries and three continents participated in the study. All blastocysts were tested using trophectoderm biopsy and next-generation sequencing. Both autologous and donation cycles were assessed. Cycles using preimplantation genetic testing for structural rearrangements were excluded from the analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: The PGT-A providers were randomly categorized (A to H). Providers B, C, D, E, F, G, and H all reported mosaicism, whereas Provider A reported embryos as either euploid or aneuploid. Ploidy rates were analyzed using multilevel mixed linear regression. Analyses were adjusted for maternal age, paternal age, oocyte source, number of embryos biopsied, day of biopsy, and PGT-A provider, as appropriate. We compared associations between genetic testing providers and PGT-A outcomes, including the number of chromosomally normal (euploid) embryos determined to be suitable for transfer. MAIN RESULTS AND THE ROLE OF CHANCE: The mean maternal age (±SD) across all providers was 36.2 (±5.2). Our findings reveal a strong association between PGT-A provider and the diagnosis of euploidy and mosaicism. Amongst the seven providers that reported mosaicism, the rates varied from 3.1% to 25.0%. After adjusting for confounders, we observed a significant difference in the likelihood of diagnosing mosaicism across providers (P < 0.001), ranging from 6.5% (95% CI: 5.2-7.4%) for Provider B to 35.6% (95% CI: 32.6-38.7%) for Provider E. Notably, adjusted euploidy rates were highest for providers that reported the lowest rates of mosaicism (Provider B: euploidy, 55.7% (95% CI: 54.1-57.4%), mosaicism, 6.5% (95% CI: 5.2-7.4%); Provider H: euploidy, 44.5% (95% CI: 43.6-45.4%), mosaicism, 9.9% (95% CI: 9.2-10.6%)); and Provider D: euploidy, 43.8% (95% CI: 39.2-48.4%), mosaicism, 11.0% (95% CI: 7.5-14.5%)). Moreover, the overall chance of having at least one euploid blastocyst available for transfer was significantly higher when mosaicism was not reported, when we compared Provider A to all other providers (OR = 1.30, 95% CI: 1.13-1.50). Differences in diagnosing and interpreting mosaic results across PGT-A laboratories raise further concerns regarding the accuracy and relevance of mosaicism predictions. While we confirmed equivalent clinical outcomes following the transfer of mosaic and euploid blastocysts, we found that a significant proportion of mosaic embryos are not used for IVF treatment. LIMITATIONS, REASONS FOR CAUTION: Due to the retrospective nature of the study, associations can be ascertained, however, causality cannot be established. Certain parameters such as blastocyst grade were not available in the dataset. Furthermore, certain platform-related and clinic-specific factors may not be readily quantifiable or explicitly captured in our dataset. As such, a full elucidation of all potential confounders accounting for variability may not be possible. WIDER IMPLICATIONS OF THE FINDINGS: Our findings highlight the strong need for standardization and quality assurance in the industry. The decision not to transfer mosaic embryos may ultimately reduce the chance of success of a PGT-A cycle by limiting the pool of available embryos. Until we can be certain that mosaic diagnoses accurately reflect biological variability, reporting mosaicism warrants utmost caution. A prudent approach is imperative, as it may determine the difference between success or failure for some patients. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Torres Quevedo Grant, awarded to M.P. (PTQ2019-010494) by the Spanish State Research Agency, Ministry of Science and Innovation, Spain. M.P., L.B., A.R.L., A.L.R.d.C.L., N.P.P., M.P., D.S., F.A., A.P., B.M., L.D., F.V.M., D.S., M.R., E.P.d.l.B., A.R., and R.V. have no competing interests to declare. B.L., R.M., and J.A.O. are full time employees of IB Biotech, the genetics company of the Instituto Bernabeu group, which performs preimplantation genetic testing. M.G. is a full time employee of Novagen, the genetics company of Cegyr, which performs preimplantation genetic testing. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Mosaicism , Preimplantation Diagnosis , Female , Humans , Pregnancy , Aneuploidy , Bias, Implicit , Blastocyst/pathology , Cohort Studies , Genetic Testing/methods , Preimplantation Diagnosis/methods , Retrospective Studies , Adult
4.
Mol Ther ; 31(8): 2326-2341, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37376733

ABSTRACT

Human germline gene correction by targeted nucleases holds great promise for reducing mutation transmission. However, recent studies have reported concerning observations in CRISPR-Cas9-targeted human embryos, including mosaicism and loss of heterozygosity (LOH). The latter has been associated with either gene conversion or (partial) chromosome loss events. In this study, we aimed to correct a heterozygous basepair substitution in PLCZ1, related to infertility. In 36% of the targeted embryos that originated from mutant sperm, only wild-type alleles were observed. By performing genome-wide double-digest restriction site-associated DNA sequencing, integrity of the targeted chromosome (i.e., no deletions larger than 3 Mb or chromosome loss) was confirmed in all seven targeted GENType-analyzed embryos (mutant editing and absence of mutation), while short-range LOH events (shorter than 10 Mb) were clearly observed by single-nucleotide polymorphism assessment in two of these embryos. These results fuel the currently ongoing discussion on double-strand break repair in early human embryos, making a case for the occurrence of gene conversion events or partial template-based homology-directed repair.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Male , Gene Editing/methods , Semen , Mutation , Alleles , Chromosomes
5.
Hum Genet ; 141(1): 65-80, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34748075

ABSTRACT

Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype-phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2-3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.


Subject(s)
Genetic Variation , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Epilepsy/genetics , Feeding and Eating Disorders/genetics , Female , Genetic Association Studies , Heterozygote , Humans , Infant , Language Development Disorders/genetics , Male , Obesity/genetics , Phenotype , Young Adult
6.
Stem Cells ; 39(5): 551-563, 2021 05.
Article in English | MEDLINE | ID: mdl-33470497

ABSTRACT

Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.


Subject(s)
Activins/genetics , Cell Differentiation/genetics , Germ Cells/cytology , Human Embryonic Stem Cells/cytology , Blastocyst/cytology , Cadherins/genetics , Cells, Cultured , Gene Expression Regulation, Developmental/genetics , Germ Cells/growth & development , Human Embryonic Stem Cells/metabolism , Humans , Integrin alpha6/genetics , Laminin/genetics , RNA-Binding Proteins/genetics , Receptors, CXCR4/genetics , SOXF Transcription Factors/genetics , Signal Transduction/genetics , Transcription Factor AP-2/genetics
7.
Haematologica ; 107(1): 211-220, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33299235

ABSTRACT

Shallow-depth sequencing of cell-free DNA, a cheap and standardized approach to obtain molecular information on tumors non-invasively, is insufficiently explored for lymphoma diagnosis and disease follow-up. This study collected 318 samples, including longitudinal liquid and paired solid biopsies, from a prospectively recruited cohort of 38 Hodgkin lymphoma (HL) and 85 aggressive B-cell non- HL patients, represented by 81 diffuse large B-cell lymphoma (DLBCL) cases. Following sequencing, copy number alterations and viral read fractions were derived and analyzed. At diagnosis, liquid biopsies showed detectable copy number alterations in 84.2% of HL (88.6% for classical HL) and 74.1% of DLBCL patients. Copy number profiles between liquid-solid pairs were highly concordant within DLBCL (r=0.815±0.043); and, compared to tissue, HL liquid biopsies had abnormalities with higher amplitudes (P=.010), implying that tumor DNA is more abundant in plasma. Additionally, 39.5% of HL and 13.6% of DLBCL cases had a significantly elevated number of plasmatic Epstein-Barr virus DNA fragments, achieving a sensitivity of 100% compared to current standard. Longitudinal analysis determined that, when detectable, copy number patterns were similar across (re)staging moments in refractory/relapsed patients. Moreover, the overall profile anomaly highly correlated with the total metabolic tumor volume (P.


Subject(s)
Cell-Free Nucleic Acids , Epstein-Barr Virus Infections , Hodgkin Disease , Lymphoma, Large B-Cell, Diffuse , Herpesvirus 4, Human/genetics , Hodgkin Disease/diagnosis , Hodgkin Disease/genetics , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics
8.
Cytotherapy ; 24(2): 213-222, 2022 02.
Article in English | MEDLINE | ID: mdl-34696961

ABSTRACT

Messenger RNA (mRNA) has become a promising tool in therapeutic cancer vaccine strategies. Owing to its flexible design and rapid production, mRNA is an attractive antigen delivery format for cancer vaccines targeting mutated peptides expressed in a tumor-the so-called neoantigens. These neoantigens are rarely shared between patients, and inclusion of these antigens in a vaccine requires the production of individual batches of patient-tailored mRNA. The authors have developed MIDRIXNEO, a personalized mRNA-loaded dendritic cell vaccine targeting tumor neoantigens, which is currently being evaluated in a phase 1 clinical study in lung cancer patients. To facilitate this study, the authors set up a Good Manufacturing Practice (GMP)-compliant production process for the manufacture of small batches of personalized neoantigen-encoding mRNA. In this article, the authors describe the complete mRNA production process and the extensive quality assessment to which the mRNA is subjected. Validation runs have shown that the process delivers mRNA of reproducible, high quality. This process is now successfully applied for the production of neoantigen-encoding mRNA for the clinical evaluation of MIDRIXNEO. To the authors' knowledge, this is the first time that a GMP-based production process of patient-tailored neoantigen mRNA has been described.


Subject(s)
Cancer Vaccines , Lung Neoplasms , Neoplasms , Antigens, Neoplasm/genetics , Humans , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Peptides , RNA, Messenger/genetics
9.
J Assist Reprod Genet ; 39(3): 609-618, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35064435

ABSTRACT

PURPOSE: Providing additional insights on the efficacy of human nuclear transfer (NT). Here, and earlier, NT has been applied to minimize transmission risk of mitochondrial DNA (mtDNA) diseases. NT has also been proposed for treating infertility, but it is still unclear which infertility indications would benefit. In this work, we therefore additionally assess the applicability of NT to overcome failed fertilization. METHODS: Patient 1 carries a homoplasmic mtDNA mutation (m.11778G > A). Seventeen metaphase II (MII) oocytes underwent pre-implantation genetic testing (PGT), while five MII oocytes were used for spindle transfer (ST), and one in vitro matured (IVM) metaphase I oocyte underwent early pronuclear transfer (ePNT). Patients 2-3 experienced multiple failed intracytoplasmic sperm injection (ICSI) and ICSI-assisted oocyte activation (AOA) cycles. For these patients, the obtained MII oocytes underwent an additional ICSI-AOA cycle, while the IVM oocytes were subjected to ST. RESULTS: For patient 1, PGT-M confirmed mutation loads close to 100%. All ST-reconstructed oocytes fertilized and cleaved, of which one progressed to the blastocyst stage. The reconstructed ePNT-zygote reached the morula stage. These samples showed an average mtDNA carry-over rate of 2.9% ± 0.8%, confirming the feasibility of NT to reduce mtDNA transmission. For patient 2-3 displaying fertilization failure, ST resulted in, respectively, 4/5 and 6/6 fertilized oocytes, providing evidence, for the first time, that NT can enable successful fertilization in this patient population. CONCLUSION: Our study showcases the repertoire of disorders for which NT can be beneficial, to overcome either mitochondrial disease transmission or failed fertilization after ICSI-AOA.


Subject(s)
Infertility , Mitochondrial Diseases , DNA, Mitochondrial/genetics , Fertilization , Fertilization in Vitro/methods , Humans , Infertility/genetics , Infertility/therapy , Oocytes , Sperm Injections, Intracytoplasmic
10.
Cleft Palate Craniofac J ; 59(11): 1346-1351, 2022 11.
Article in English | MEDLINE | ID: mdl-34714179

ABSTRACT

OBJECTIVE: Facial dysostosis is a group of rare craniofacial congenital disabilities requiring multidisciplinary long-term care. This report presents the phenotypic and genotypic information from South India. DESIGN: The study is a case series. SETTING: This was an international collaborative study involving a tertiary craniofacial clinic and medical genetics unit. PATIENTS, PARTICIPANTS: The participants were 9 families with 17 affected individuals of facial dysostosis. INTERVENTION: Exome analysis focused on known genes associated with acrofacial and mandibulofacial syndromes. MAIN OUTCOME MEASURE: The outcome measure was to report phenotyptic and genetic heterogeneity in affected individuals. RESULTS: A Tessier cleft was seen in 7 (41%), lower eyelid coloboma in 12 (65%), ear anomalies in 10 (59%), uniolateral or bilateral aural atresia in 4 (24%), and deafness in 6 (35%). The facial gestalt of Treacher Collins syndrome (TCS) showed extensive phenotypic variations. Pathogenic variants in TCOF1 (Treacher Collins syndrome) were seen in six families, POLR1A (acrofacial dysostosis, Cincinnati type) and EFTUD2 (mandibulofacial dysostosis with microcephaly) in one each. One family (11.1%) had no detectable variation. Five out of six probands with Treacher Collins syndrome had other affected family members (83.3%), including a non-penetrant mother, identified after sequencing. CONCLUSION: Our report illustrates the molecular heterogeneity of mandibulofacial dysostosis in India.


Subject(s)
Mandibulofacial Dysostosis , Microcephaly , Face , Genotype , Humans , Mandibulofacial Dysostosis/genetics , Microcephaly/genetics , Peptide Elongation Factors/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , Syndrome
11.
Genes Chromosomes Cancer ; 60(4): 272-281, 2021 04.
Article in English | MEDLINE | ID: mdl-33336840

ABSTRACT

Human embryonic stem cells (hESCs) and embryonal tumors share a number of common features, including a compromised G1/S checkpoint. Consequently, these rapidly dividing hESCs and cancer cells undergo elevated levels of replicative stress, inducing genomic instability that drives chromosomal imbalances. In this context, it is of interest that long-term in vitro cultured hESCs exhibit a remarkable high incidence of segmental DNA copy number gains, some of which are also highly recurrent in certain malignancies such as 17q gain (17q+). The selective advantage of DNA copy number changes in these cells has been attributed to several underlying processes including enhanced proliferation. We hypothesized that these recurrent chromosomal imbalances become rapidly embedded in the cultured hESCs through a replicative stress driven Darwinian selection process. To this end, we compared the effect of hydroxyurea-induced replicative stress vs normal growth conditions in an equally mixed cell population of isogenic euploid and 17q + hESCs. We could show that 17q + hESCs rapidly overtook normal hESCs. Our data suggest that recurrent chromosomal segmental gains provide a proliferative advantage to hESCs under increased replicative stress, a process that may also explain the highly recurrent nature of certain imbalances in cancer.


Subject(s)
Cell Division , Chromosome Aberrations , Human Embryonic Stem Cells/cytology , Selection, Genetic , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Chromosomes, Human, Pair 17 , DNA Copy Number Variations , Humans , Hydroxyurea , Stress, Physiological , Transcriptome
12.
Hum Mol Genet ; 28(5): 818-827, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30445463

ABSTRACT

Mutations in myocyte enhancer factor 2C (MEF2C), an important transcription factor in neurodevelopment, are associated with a Rett-like syndrome. Structural variants (SVs) upstream of MEF2C, which do not disrupt the gene itself, have also been found in patients with a similar phenotype, suggesting that disruption of MEF2C regulatory elements can also cause a Rett-like phenotype. To characterize those elements that regulate MEF2C during neural development and that are affected by these SVs, we used genomic tools coupled with both in vitro and in vivo functional assays. Through circularized chromosome conformation capture sequencing (4C-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-seq), we revealed a complex interaction network in which the MEF2C promoter physically contacts several distal enhancers that are deleted or translocated by disease-associated SVs. A total of 16 selected candidate regulatory sequences were tested for enhancer activity in vitro, with 14 found to be functional enhancers. Further analyses of their in vivo activity in zebrafish showed that each of these enhancers has a distinct activity pattern during development, with eight enhancers displaying neuronal activity. In summary, our results disentangle a complex regulatory network governing neuronal MEF2C expression that involves multiple distal enhancers. In addition, the characterized neuronal enhancers pose as novel candidates to screen for mutations in neurodevelopmental disorders, such as Rett-like syndrome.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , MEF2 Transcription Factors/genetics , Neurons/metabolism , Rett Syndrome/genetics , Cells, Cultured , Genetic Association Studies/methods , Genetic Predisposition to Disease , Humans , Regulatory Sequences, Nucleic Acid , Rett Syndrome/diagnosis
13.
Mod Pathol ; 34(11): 2043-2049, 2021 11.
Article in English | MEDLINE | ID: mdl-34168281

ABSTRACT

Myxoid pleomorphic liposarcoma is a recently defined subtype of liposarcoma, which preferentially involves the mediastinum of young patients and shows mixed histological features of conventional myxoid liposarcoma and pleomorphic liposarcoma. While myxoid pleomorphic liposarcoma is known to lack the EWSR1/FUS-DDIT3 fusions characteristic of the former, additional genetic data are limited. To further understand this tumor type, we extensively examined a series of myxoid pleomorphic liposarcomas by fluorescence in situ hybridization (FISH), shallow whole genome sequencing (sWGS) and genome-wide DNA methylation profiling. The 12 tumors occurred in 6 females and 6 males, ranging from 17 to 58 years of age (mean 33 years, median 35 years), and were located in the mediastinum (n = 5), back, neck, cheek and leg, including thigh. Histologically, all cases consisted of relatively, bland, abundantly myxoid areas with a prominent capillary vasculature, admixed with much more cellular and less myxoid foci containing markedly pleomorphic spindled cells, numerous pleomorphic lipoblasts and elevated mitotic activity. Using sWGS, myxoid pleomorphic liposarcomas were found to have complex chromosomal alterations, including recurrent large chromosomal gains involving chromosomes 1, 6-8, 18-21 and losses involving chromosomes 13, 16 and 17. Losses in chromosome 13, in particular loss in 13q14 (including RB1, RCTB2, DLEU1, and ITM2B genes), were observed in 4 out of 8 cases analyzed. Additional FISH analyses confirmed the presence of a monoallelic RB1 deletion in 8/12 cases. Moreover, nuclear Rb expression was deficient in all studied cases. None showed DDIT3 gene rearrangement or MDM2 gene amplification. Using genome-wide DNA methylation profiling, myxoid pleomorphic liposarcomas and conventional pleomorphic liposarcomas formed a common methylation cluster, which segregated from conventional myxoid liposarcomas. While the morphologic, genetic and epigenetic characteristics of myxoid pleomorphic liposarcoma suggest a link with conventional pleomorphic liposarcoma, its distinctive clinical features support continued separate classification for the time being.


Subject(s)
DNA, Neoplasm/genetics , Head and Neck Neoplasms/classification , Liposarcoma, Myxoid/classification , Liposarcoma/classification , Mediastinal Neoplasms/classification , Neoplasm Proteins/genetics , Soft Tissue Neoplasms/classification , Adolescent , Adult , DNA Methylation , Epigenomics , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Liposarcoma/genetics , Liposarcoma/metabolism , Liposarcoma/pathology , Liposarcoma, Myxoid/genetics , Liposarcoma, Myxoid/metabolism , Liposarcoma, Myxoid/pathology , Male , Mediastinal Neoplasms/genetics , Mediastinal Neoplasms/metabolism , Mediastinal Neoplasms/pathology , Middle Aged , Molecular Biology , Neoplasm Proteins/metabolism , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/metabolism , Soft Tissue Neoplasms/pathology , Whole Genome Sequencing , Young Adult
14.
Genet Med ; 23(6): 1137-1142, 2021 06.
Article in English | MEDLINE | ID: mdl-33564150

ABSTRACT

PURPOSE: Noninvasive prenatal screening (NIPS) using cell-free DNA has transformed prenatal care. Belgium was the first country to implement and fully reimburse NIPS as a first-tier screening test offered to all pregnant women. A consortium consisting of all Belgian genetic centers report the outcome of two years genome-wide NIPS implementation. METHODS: The performance for the common trisomies and for secondary findings was evaluated based on 153,575 genome-wide NIP tests. Furthermore, the evolution of the number of invasive tests and the incidence of Down syndrome live births was registered. RESULTS: Trisomies 21, 18, and 13 were detected in respectively 0.32%, 0.07%, and 0.06% of cases, with overall positive predictive values (PPVs) of 92.4%, 84.6%, and 43.9%. Rare autosomal trisomies and fetal segmental imbalances were detected in respectively 0.23% and 0.07% of cases with PPVs of 4.1% and 47%. The number of invasive obstetric procedures decreased by 52%. The number of trisomy 21 live births dropped to 0.04%. CONCLUSION: Expanding the scope of NIPS beyond trisomy 21 fetal screening allows the implementation of personalized genomic medicine for the obstetric population. This genome-wide NIPS approach has been embedded successfully in prenatal genetic care in Belgium and might serve as a framework for other countries offering NIPS.


Subject(s)
Chromosome Disorders , Down Syndrome , Noninvasive Prenatal Testing , Aneuploidy , Chromosome Disorders/diagnosis , Chromosome Disorders/epidemiology , Chromosome Disorders/genetics , Down Syndrome/diagnosis , Down Syndrome/epidemiology , Down Syndrome/genetics , Female , Humans , Pregnancy , Prenatal Diagnosis , Trisomy
15.
Nucleic Acids Res ; 47(4): 1605-1614, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30566647

ABSTRACT

Shallow whole-genome sequencing to infer copy number alterations (CNAs) in the human genome is rapidly becoming the method par excellence for routine diagnostic use. Numerous tools exist to deduce aberrations from massive parallel sequencing data, yet most are optimized for research and often fail to redeem paramount needs in a clinical setting. Optimally, a read depth-based analytical software should be able to deal with single-end and low-coverage data-this to make sequencing costs feasible. Other important factors include runtime, applicability to a variety of analyses and overall performance. We compared the most important aspect, being normalization, across six different CNA tools, selected for their assumed ability to satisfy the latter needs. In conclusion, WISECONDOR, which uses a within-sample normalization technique, undoubtedly produced the best results concerning variance, distributional assumptions and basic ability to detect true variations. Nonetheless, as is the case with every tool, WISECONDOR has limitations, which arise through its exclusiveness for non-invasive prenatal testing. Therefore, this work presents WisecondorX in addition, an improved WISECONDOR that enables its use for varying types of applications. WisecondorX is freely available at https://github.com/CenterForMedicalGeneticsGhent/WisecondorX.


Subject(s)
DNA Copy Number Variations/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software , Female , Genome, Human/genetics , Humans , Pregnancy , Prenatal Diagnosis , Whole Genome Sequencing/methods
16.
Prenat Diagn ; 40(10): 1272-1283, 2020 09.
Article in English | MEDLINE | ID: mdl-32436253

ABSTRACT

OBJECTIVE: Belgian genetic centers established a database containing data on all chromosomal microarrays performed in a prenatal context. A study was initiated to evaluate postnatal development in children diagnosed prenatally with a non-benign copy number variant (CNV). METHODS: All children diagnosed with a prenatally detected non-benign CNV in a Belgian genetic center between May 2013 and February 2015 were included in the patient population. The control population consisted of children who had undergone an invasive procedure during pregnancy, with no or only benign CNVs. Child development was evaluated at 36 months using three (3) questionnaires: Ages and Stages Questionnaire Third edition, Ages and Stages Questionnaire Social-Emotional Second Edition and a general questionnaire. RESULTS: A significant difference in communication and personal-social development was detected between children with a reported susceptibility CNV and both children with an unreported susceptibility CNV and the control population. The outcome of children with a particular CNV is discussed in a case-by-case manner. CONCLUSION: Our postnatal follow-up project of children with a prenatally detected non-benign CNV is the first nationwide project of its kind. A higher number of cases for each CNV category is however needed to confirm our findings.


Subject(s)
DNA Copy Number Variations , Pregnancy Outcome/epidemiology , Prenatal Diagnosis/statistics & numerical data , Belgium/epidemiology , Case-Control Studies , Child, Preschool , Chromosome Aberrations/statistics & numerical data , Cohort Studies , Congenital Abnormalities/diagnosis , Congenital Abnormalities/epidemiology , Congenital Abnormalities/genetics , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Microarray Analysis/methods , Pregnancy , Prenatal Diagnosis/methods
17.
Genet Med ; 21(4): 1021-1026, 2019 04.
Article in English | MEDLINE | ID: mdl-30293988

ABSTRACT

PURPOSE: RAC3 is an underexamined member of the Rho GTPase gene family that is expressed in the developing brain and linked to key cellular functions. De novo missense variants in the homolog RAC1 were recently associated with developmental disorders. In the RAC subfamily, transforming missense changes at certain shared residues have been observed in human cancers and previously characterized in experimental studies. The purpose of this study was to determine whether constitutional dysregulation of RAC3 is associated with human disease. METHODS: We discovered a RAC3 variant in the index case using genome sequencing, and searched for additional variants using international data-sharing initiatives. Functional effects of the variants were assessed using a multifaceted approach generalizable to most clinical laboratory settings. RESULTS: We rapidly identified five individuals with de novo monoallelic missense variants in RAC3, including one recurrent change. Every participant had severe intellectual disability and brain malformations. In silico protein modeling, and prior in vivo and in situ experiments, supported a transforming effect for each of the three different RAC3 variants. All variants were observed in databases of somatic variation in cancer. CONCLUSIONS: Missense variants in RAC3 cause a novel brain disorder, likely through a mechanism of constitutive protein activation.


Subject(s)
Genetic Predisposition to Disease , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , rac GTP-Binding Proteins/genetics , Adult , Child, Preschool , GTP Phosphohydrolases/genetics , Humans , Infant, Newborn , Intellectual Disability/diagnostic imaging , Intellectual Disability/physiopathology , Mutation, Missense , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/physiopathology , Phenotype , Whole Genome Sequencing
18.
Prenat Diagn ; 39(10): 925-933, 2019 09.
Article in English | MEDLINE | ID: mdl-31219182

ABSTRACT

OBJECTIVE: During routine noninvasive prenatal testing (NIPT), cell-free fetal DNA fraction is ideally derived from shallow-depth whole-genome sequencing data, preventing the need for additional experimental assays. The fraction of aligned reads to chromosome Y enables proper quantification for male fetuses, unlike for females, where advanced predictive procedures are required. This study introduces PREdict FetAl ComponEnt (PREFACE), a novel bioinformatics pipeline to establish fetal fraction in a gender-independent manner. METHODS: PREFACE combines the strengths of principal component analysis and neural networks to model copy number profiles. RESULTS: For sets of roughly 1100 male NIPT samples, a cross-validated Pearson correlation of 0.9 between predictions and fetal fractions according to Y chromosomal read counts was noted. PREFACE enables training with both male and unlabeled female fetuses. Using our complete cohort (nfemale = 2468, nmale = 2723), the correlation metric reached 0.94. CONCLUSIONS: Allowing individual institutions to generate optimized models sidelines between-laboratory bias, as PREFACE enables user-friendly training with a limited amount of retrospective data. In addition, our software provides the fetal fraction based on the copy number state of chromosome X. We show that these measures can predict mixed multiple pregnancies, sex chromosomal aneuploidies, and the source of observed aberrations.


Subject(s)
Cell-Free Nucleic Acids/analysis , Chromosome Disorders/diagnosis , Fetus/metabolism , Noninvasive Prenatal Testing , Principal Component Analysis/methods , Software , Chromosome Disorders/epidemiology , Cohort Studies , Computational Biology/methods , Computer Simulation , Female , Fetus/physiology , Genetic Testing/methods , Genetic Testing/statistics & numerical data , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Infant, Newborn , Male , Noninvasive Prenatal Testing/methods , Noninvasive Prenatal Testing/statistics & numerical data , Pregnancy , Prognosis , Reproducibility of Results , Retrospective Studies , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/statistics & numerical data , Sex Factors
19.
Prenat Diagn ; 38(13): 1120-1128, 2018 12.
Article in English | MEDLINE | ID: mdl-30334587

ABSTRACT

OBJECTIVE: With the replacement of karyotyping by chromosomal microarray (CMA) in invasive prenatal diagnosis, new challenges have arisen. By building a national database, we standardize the classification and reporting of prenatally detected copy number variants (CNVs) across Belgian genetic centers. This database, which will link genetic and ultrasound findings with postnatal development, forms a unique resource to investigate the pathogenicity of variants of uncertain significance and to refine the phenotypic spectrum of pathogenic and susceptibility CNVs. METHODS: The Belgian MicroArray Prenatal (BEMAPRE) consortium is a collaboration of all genetic centers in Belgium. We collected data from all invasive prenatal procedures performed between May 2013 and July 2016. RESULTS: In this three-year period, 13 266 prenatal CMAs were performed. By national agreement, a limited number of susceptibility CNVs and no variants of uncertain significance were reported. Added values for using CMA versus conventional karyotyping were 1.8% in the general invasive population and 2.7% in cases with an ultrasound anomaly. Of the reported CNVs, 31.5% would have remained undetected with non-invasive prenatal test as the first-tier test. CONCLUSION: The establishment of a national database for prenatal CNV data allows for a uniform reporting policy and the investigation of the prenatal and postnatal genotype-phenotype correlation.


Subject(s)
Chromosome Aberrations , Congenital Abnormalities/genetics , DNA Copy Number Variations/genetics , Haploinsufficiency/genetics , Microarray Analysis/methods , Adult , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Belgium , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Comparative Genomic Hybridization , Congenital Abnormalities/diagnosis , Databases, Genetic , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/genetics , Female , Genetic Predisposition to Disease , Hereditary Sensory and Motor Neuropathy/diagnosis , Hereditary Sensory and Motor Neuropathy/genetics , Humans , Ichthyosis, X-Linked/diagnosis , Ichthyosis, X-Linked/genetics , Karyotyping , Pregnancy , Prenatal Diagnosis
20.
J Med Genet ; 54(9): 613-623, 2017 09.
Article in English | MEDLINE | ID: mdl-28735298

ABSTRACT

BACKGROUND: Mutations in forkhead box protein P1 (FOXP1) cause intellectual disability (ID) and specific language impairment (SLI), with or without autistic features (MIM: 613670). Despite multiple case reports no specific phenotype emerged so far. METHODS: We correlate clinical and molecular data of 25 novel and 23 previously reported patients with FOXP1 defects. We evaluated FOXP1 activity by an in vitro luciferase model and assessed protein stability in vitro by western blotting. RESULTS: Patients show ID, SLI, neuromotor delay (NMD) and recurrent facial features including a high broad forehead, bent downslanting palpebral fissures, ptosis and/or blepharophimosis and a bulbous nasal tip. Behavioural problems and autistic features are common. Brain, cardiac and urogenital malformations can be associated. More severe ID and NMD, sensorineural hearing loss and feeding difficulties are more common in patients with interstitial 3p deletions (14 patients) versus patients with monogenic FOXP1 defects (34 patients). Mutations result in impaired transcriptional repression and/or reduced protein stability. CONCLUSIONS: FOXP1-related ID syndrome is a recognisable entity with a wide clinical spectrum and frequent systemic involvement. Our data will be helpful to evaluate genotype-phenotype correlations when interpreting next-generation sequencing data obtained in patients with ID and/or SLI and will guide clinical management.


Subject(s)
Forkhead Transcription Factors/genetics , Intellectual Disability/genetics , Repressor Proteins/genetics , Autism Spectrum Disorder/genetics , Face/abnormalities , Female , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/metabolism , Humans , Language Disorders/genetics , Male , Motor Skills Disorders/genetics , Mutation , Mutation, Missense , Neurodevelopmental Disorders/genetics , Phenotype , Protein Stability , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Syndrome , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL