Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Biol Chem ; 294(37): 13800-13810, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31350338

ABSTRACT

The flavin transferase ApbE plays essential roles in bacterial physiology, covalently incorporating FMN cofactors into numerous respiratory enzymes that use the integrated cofactors as electron carriers. In this work we performed a detailed kinetic and structural characterization of Vibrio cholerae WT ApbE and mutants of the conserved residue His-257, to understand its role in substrate binding and in the catalytic mechanism of this family. Bi-substrate kinetic experiments revealed that ApbE follows a random Bi Bi sequential kinetic mechanism, in which a ternary complex is formed, indicating that both substrates must be bound to the enzyme for the reaction to proceed. Steady-state kinetic analyses show that the turnover rates of His-257 mutants are significantly smaller than those of WT ApbE, and have increased Km values for both substrates, indicating that the His-257 residue plays important roles in catalysis and in enzyme-substrate complex formation. Analyses of the pH dependence of ApbE activity indicate that the pKa of the catalytic residue (pKES1) increases by 2 pH units in the His-257 mutants, suggesting that this residue plays a role in substrate deprotonation. The crystal structures of WT ApbE and an H257G mutant were determined at 1.61 and 1.92 Å resolutions, revealing that His-257 is located in the catalytic site and that the substitution does not produce major conformational changes. We propose a reaction mechanism in which His-257 acts as a general base that deprotonates the acceptor residue, which subsequently performs a nucleophilic attack on FAD for flavin transfer.


Subject(s)
Flavins/metabolism , Transferases/metabolism , Vibrio cholerae/metabolism , Bacterial Proteins/metabolism , Catalysis , Catalytic Domain , Conserved Sequence , Flavin Mononucleotide/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavins/genetics , Histidine/metabolism , Kinetics , Oxidation-Reduction , Substrate Specificity/genetics , Transferases/genetics , Vibrio cholerae/genetics
2.
J Comput Chem ; 41(6): 573-586, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31821590

ABSTRACT

The impact of harmonic restraints on protein heavy atoms and ligand atoms on end-point free energy calculations is systematically characterized for 54 protein-ligand complexes. We observe that stronger restraints reduce the equilibration time and statistical inefficiency, suppress conformational sampling, influence correlation with experiment, and monotonically decrease the estimated loss of entropy upon binding, leading to stronger estimated binding free energies in most systems. A statistical estimator that reweights for the biasing potential and includes data prior to the estimated equilibration time has the highest correlation with experiment. A spring constant of 20 cal mol-1 Å-2 maintains a near-native energy landscape and suppresses artifactual energy minima while minimally limiting thermal fluctuations about the crystal structure. © 2019 Wiley Periodicals, Inc.


Subject(s)
Molecular Dynamics Simulation , Thermodynamics , Binding Sites , Ligands , Protein Conformation , Proteins/chemistry
3.
J Biol Chem ; 293(40): 15664-15677, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30135204

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative bacterium responsible for a large number of nosocomial infections. The P. aeruginosa respiratory chain contains the ion-pumping NADH:ubiquinone oxidoreductase (NQR). This enzyme couples the transfer of electrons from NADH to ubiquinone to the pumping of sodium ions across the cell membrane, generating a gradient that drives essential cellular processes in many bacteria. In this study, we characterized P. aeruginosa NQR (Pa-NQR) to elucidate its physiologic function. Our analyses reveal that Pa-NQR, in contrast with NQR homologues from other bacterial species, is not a sodium pump, but rather a completely new form of proton pump. Homology modeling and molecular dynamics simulations suggest that cation selectivity could be determined by the exit ion channels. We also show that Pa-NQR is resistant to the inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO). HQNO is a quinolone secreted by P. aeruginosa during infection that acts as a quorum sensing agent and also has bactericidal properties against other bacteria. Using comparative analysis and computational modeling of the ubiquinone-binding site, we identified the specific residues that confer resistance toward this inhibitor. In summary, our findings indicate that Pa-NQR is a proton pump rather than a sodium pump and is highly resistant against the P. aeruginosa-produced compound HQNO, suggesting an important role in the adaptation against autotoxicity. These results provide a deep understanding of the metabolic role of NQR in P. aeruginosa and provide insight into the structural factors that determine the functional specialization in this family of respiratory complexes.


Subject(s)
Bacterial Proteins/chemistry , Electron Transport Complex I/chemistry , Electrons , Protons , Pseudomonas aeruginosa/enzymology , Ubiquinone/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Electron Transport , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydroxyquinolines/pharmacology , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Ubiquinone/metabolism , Vibrio cholerae/drug effects , Vibrio cholerae/enzymology , Vibrio cholerae/genetics
4.
ACS Omega ; 4(21): 19324-19331, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31763556

ABSTRACT

The ion-pumping NADH: ubiquinone dehydrogenase (NQR) is a vital component of the respiratory chain of numerous species of marine and pathogenic bacteria, including Vibrio cholerae. This respiratory enzyme couples the transfer of electrons from NADH to ubiquinone (UQ) to the pumping of ions across the plasma membrane, producing a gradient that sustains multiple homeostatic processes. The binding site of UQ within the enzyme is an important functional and structural motif that could be used to design drugs against pathogenic bacteria. Our group recently located the UQ site in the interface between subunits B and D and identified the residues within subunit B that are important for UQ binding. In this study, we carried out alanine scanning mutagenesis of amino acid residues located in subunit D of V. cholerae NQR to understand their role in UQ binding and enzymatic catalysis. Moreover, molecular docking calculations were performed to characterize the structure of the site at the atomic level. The results show that mutations in these positions, in particular, in residues P185, L190, and F193, decrease the turnover rate and increase the Km for UQ. These mutants also showed an increase in the resistance against the inhibitor HQNO. The data indicate that residues in subunit D fulfill important structural roles, restricting and orienting UQ in a catalytically favorable position. In addition, mutations of these residues open the site and allow the simultaneous binding of substrate and inhibitors, producing partial inhibition, which appears to be a strategy used by Pseudomonas aeruginosa to avoid autopoisoning.

5.
J Chem Theory Comput ; 14(11): 6035-6049, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30296084

ABSTRACT

We introduce a number of computationally inexpensive modifications to the MM/PBSA and MM/GBSA estimators for binding free energies, which are based on average receptor-ligand interaction energies in simulations of a noncovalent complex, to improve the treatment of entropy: second- and higher-order terms in a cumulant expansion and a confining potential on ligand external degrees of freedom. We also consider a filter for snapshots where ligands have drifted from the initial binding pose. The variations were tested on six sets of systems for which binding modes and free energies have previously been experimentally determined. For some data sets, none of the tested estimators led to results significantly correlated with measured free energies. In data sets with nontrivial correlation, a ligand RMSD cutoff of 3 Å and a second-order truncation of the cumulant expansion was found to be comparable or better than the average interaction energy by several statistical metrics.

SELECTION OF CITATIONS
SEARCH DETAIL