Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38552609

ABSTRACT

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Subject(s)
Neoplasms , Humans , Carcinogenesis , Microbiota , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Obesity/complications , Quality of Life
2.
Cell ; 185(23): 4259-4279, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36368305

ABSTRACT

The heterogeneity of tissue macrophages, in health and in disease, has become increasingly transparent over the last decade. But with the plethora of data comes a natural need for organization and the design of a conceptual framework for how we can better understand the origins and functions of different macrophages. We propose that the ontogeny of a macrophage-beyond its fundamental derivation as either embryonically or bone marrow-derived, but rather inclusive of the course of its differentiation, amidst steady-state cues, disease-associated signals, and time-constitutes a critical piece of information about its contribution to homeostasis or the progression of disease.


Subject(s)
Bone Marrow , Macrophages , Homeostasis , Cell Differentiation
3.
Cell ; 185(7): 1223-1239.e20, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35290801

ABSTRACT

While CRISPR screens are helping uncover genes regulating many cell-intrinsic processes, existing approaches are suboptimal for identifying extracellular gene functions, particularly in the tissue context. Here, we developed an approach for spatial functional genomics called Perturb-map. We applied Perturb-map to knock out dozens of genes in parallel in a mouse model of lung cancer and simultaneously assessed how each knockout influenced tumor growth, histopathology, and immune composition. Moreover, we paired Perturb-map and spatial transcriptomics for unbiased analysis of CRISPR-edited tumors. We found that in Tgfbr2 knockout tumors, the tumor microenvironment (TME) was converted to a fibro-mucinous state, and T cells excluded, concomitant with upregulated TGFß and TGFß-mediated fibroblast activation, indicating that TGFß-receptor loss on cancer cells increased TGFß bioavailability and its immunosuppressive effects on the TME. These studies establish Perturb-map for functional genomics within the tissue at single-cell resolution with spatial architecture preserved and provide insight into how TGFß responsiveness of cancer cells can affect the TME.


Subject(s)
Neoplasms , Tumor Microenvironment , Animals , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genomics , Mice , Neoplasms/genetics , Transforming Growth Factor beta/genetics
4.
Nat Immunol ; 24(5): 792-801, 2023 05.
Article in English | MEDLINE | ID: mdl-37081148

ABSTRACT

Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.


Subject(s)
Killer Cells, Natural , Lung Neoplasms , Humans , Mice , Animals , Macrophages , Myeloid Cells , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
5.
Annu Rev Immunol ; 31: 563-604, 2013.
Article in English | MEDLINE | ID: mdl-23516985

ABSTRACT

Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.


Subject(s)
Cell Differentiation/immunology , Cell Lineage/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Animals , Cell Movement/immunology , Dendritic Cells/cytology , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/physiology , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology
6.
Cell ; 183(4): 841-844, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32949492

ABSTRACT

The U.S. government has sought to restrict immigration under the "America First" doctrine. These policies severely harm American science by stripping it of talent and eliminating a major driver of its innovation engine. We urge scientists to work to reverse these policies and forcefully condemn anti-immigrant sentiments.


Subject(s)
Science , COVID-19/epidemiology , COVID-19/virology , Emigrants and Immigrants , Emigration and Immigration , Humans , Laboratory Personnel , SARS-CoV-2/physiology , United States
7.
Cell ; 180(1): 79-91.e16, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866067

ABSTRACT

Lymphoid cells that produce interleukin (IL)-17 cytokines protect barrier tissues from pathogenic microbes but are also prominent effectors of inflammation and autoimmune disease. T helper 17 (Th17) cells, defined by RORγt-dependent production of IL-17A and IL-17F, exert homeostatic functions in the gut upon microbiota-directed differentiation from naive CD4+ T cells. In the non-pathogenic setting, their cytokine production is regulated by serum amyloid A proteins (SAA1 and SAA2) secreted by adjacent intestinal epithelial cells. However, Th17 cell behaviors vary markedly according to their environment. Here, we show that SAAs additionally direct a pathogenic pro-inflammatory Th17 cell differentiation program, acting directly on T cells in collaboration with STAT3-activating cytokines. Using loss- and gain-of-function mouse models, we show that SAA1, SAA2, and SAA3 have distinct systemic and local functions in promoting Th17-mediated inflammatory diseases. These studies suggest that T cell signaling pathways modulated by the SAAs may be attractive targets for anti-inflammatory therapies.


Subject(s)
Irritable Bowel Syndrome/metabolism , Serum Amyloid A Protein/metabolism , Th17 Cells/metabolism , Adult , Animals , Autoimmune Diseases/metabolism , Cell Differentiation/immunology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Humans , Inflammation/metabolism , Interleukin-17/metabolism , Irritable Bowel Syndrome/blood , Male , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th1 Cells , Th17 Cells/immunology
8.
Cell ; 183(4): 982-995.e14, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32991843

ABSTRACT

Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1), and mucosal immune dysregulation (IL-17A, CCL20, and CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK and T lymphocytes, suggesting extravasation to affected tissues. Finally, profiling the autoantigen reactivity of MIS-C plasma revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal, and immune-cell antigens. All patients were treated with anti-IL-6R antibody and/or IVIG, which led to rapid disease resolution.


Subject(s)
Inflammation/pathology , Systemic Inflammatory Response Syndrome/pathology , Adolescent , Antibodies, Viral/blood , Autoantibodies/blood , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Chemokine CCL3/metabolism , Child , Child, Preschool , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Immunity, Humoral , Infant , Infant, Newborn , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-18/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Young Adult
9.
Nat Immunol ; 23(2): 194-202, 2022 02.
Article in English | MEDLINE | ID: mdl-35105985

ABSTRACT

The world continues to contend with successive waves of coronavirus disease 2019 (COVID-19), fueled by the emergence of viral variants. At the same time, persistent, prolonged and often debilitating sequelae are increasingly recognized in convalescent individuals, named 'post-COVID-19 syndrome' or 'long-haul COVID'. Clinical symptomatology includes fatigue, malaise, dyspnea, defects in memory and concentration and a variety of neuropsychiatric syndromes as the major manifestations, and several organ systems can be involved. The underlying pathophysiological mechanisms are poorly understood at present. This Review details organ-specific sequelae of post-COVID-19 syndromes and examines the underlying pathophysiological mechanisms available so far, elaborating on persistent inflammation, induced autoimmunity and putative viral reservoirs. Finally, we propose diagnostic strategies to better understand this heterogeneous disorder that continues to afflict millions of people worldwide.


Subject(s)
COVID-19/complications , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/physiopathology , COVID-19/virology , Host-Pathogen Interactions , Humans , Prognosis , SARS-CoV-2/immunology , Symptom Assessment , Time Factors , Post-Acute COVID-19 Syndrome
10.
Cell ; 178(6): 1493-1508.e20, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474370

ABSTRACT

Clinical benefits of cytokine blockade in ileal Crohn's disease (iCD) are limited to a subset of patients. Here, we applied single-cell technologies to iCD lesions to address whether cellular heterogeneity contributes to treatment resistance. We found that a subset of patients expressed a unique cellular module in inflamed tissues that consisted of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells, which we named the GIMATS module. Analysis of ligand-receptor interaction pairs identified a distinct network connectivity that likely drives the GIMATS module. Strikingly, the GIMATS module was also present in a subset of patients in four independent iCD cohorts (n = 441), and its presence at diagnosis correlated with failure to achieve durable corticosteroid-free remission upon anti-TNF therapy. These results emphasize the limitations of current diagnostic assays and the potential for single-cell mapping tools to identify novel biomarkers of treatment response and tailored therapeutic opportunities.


Subject(s)
Crohn Disease/therapy , Cytokines/immunology , Intestines/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Crohn Disease/immunology , Crohn Disease/pathology , Humans , Immunotherapy/methods , Phagocytes/pathology , Single-Cell Analysis , Stromal Cells/pathology , T-Lymphocytes/pathology
11.
Cell ; 178(5): 1102-1114.e17, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442403

ABSTRACT

Caloric restriction is known to improve inflammatory and autoimmune diseases. However, the mechanisms by which reduced caloric intake modulates inflammation are poorly understood. Here we show that short-term fasting reduced monocyte metabolic and inflammatory activity and drastically reduced the number of circulating monocytes. Regulation of peripheral monocyte numbers was dependent on dietary glucose and protein levels. Specifically, we found that activation of the low-energy sensor 5'-AMP-activated protein kinase (AMPK) in hepatocytes and suppression of systemic CCL2 production by peroxisome proliferator-activator receptor alpha (PPARα) reduced monocyte mobilization from the bone marrow. Importantly, we show that fasting improves chronic inflammatory diseases without compromising monocyte emergency mobilization during acute infectious inflammation and tissue repair. These results reveal that caloric intake and liver energy sensors dictate the blood and tissue immune tone and link dietary habits to inflammatory disease outcome.


Subject(s)
Caloric Restriction , Monocytes/metabolism , AMP-Activated Protein Kinases/metabolism , Adult , Animals , Antigens, Ly/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Chemokine CCL2/deficiency , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Female , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/cytology , PPAR alpha/deficiency , PPAR alpha/genetics , PPAR alpha/metabolism
12.
Nat Immunol ; 22(7): 914-927, 2021 07.
Article in English | MEDLINE | ID: mdl-34099919

ABSTRACT

To better define the control of immune system regulation, we generated an atlas of microRNA (miRNA) expression from 63 mouse immune cell populations and connected these signatures with assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq) and nascent RNA profiles to establish a map of miRNA promoter and enhancer usage in immune cells. miRNA complexity was relatively low, with >90% of the miRNA compartment of each population comprising <75 miRNAs; however, each cell type had a unique miRNA signature. Integration of miRNA expression with chromatin accessibility revealed putative regulatory elements for differentially expressed miRNAs, including miR-21a, miR-146a and miR-223. The integrated maps suggest that many miRNAs utilize multiple promoters to reach high abundance and identified dominant and divergent miRNA regulatory elements between lineages and during development that may be used by clustered miRNAs, such as miR-99a/let-7c/miR-125b, to achieve distinct expression. These studies, with web-accessible data, help delineate the cis-regulatory elements controlling miRNA signatures of the immune system.


Subject(s)
Gene Expression Profiling , Immune System/metabolism , MicroRNAs/genetics , Promoter Regions, Genetic , Transcriptome , Animals , Cells, Cultured , Chromatin Immunoprecipitation , Computational Biology , Gene Expression Regulation, Developmental , Immune System/cytology , Immune System/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , RNA-Seq
13.
Immunity ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38878769

ABSTRACT

Fasting is associated with improved outcomes in cancer. Here, we investigated the impact of fasting on natural killer (NK) cell anti-tumor immunity. Cyclic fasting improved immunity against solid and metastatic tumors in an NK cell-dependent manner. During fasting, NK cells underwent redistribution from peripheral tissues to the bone marrow (BM). In humans, fasting also reduced circulating NK cell numbers. NK cells in the spleen of fasted mice were metabolically rewired by elevated concentrations of fatty acids and glucocorticoids, augmenting fatty acid metabolism via increased expression of the enzyme CPT1A, and Cpt1a deletion impaired NK cell survival and function in this setting. In parallel, redistribution of NK cells to the BM during fasting required the trafficking mediators S1PR5 and CXCR4. These cells were primed by an increased pool of interleukin (IL)-12-expressing BM myeloid cells, which improved IFN-γ production. Our findings identify a link between dietary restriction and optimized innate immune responses, with the potential to enhance immunotherapy strategies.

14.
Cell ; 175(4): 1141-1155.e16, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30343902

ABSTRACT

CRISPR pools are being widely employed to identify gene functions. However, current technology, which utilizes DNA as barcodes, permits limited phenotyping and bulk-cell resolution. To enable novel screening capabilities, we developed a barcoding system operating at the protein level. We synthesized modules encoding triplet combinations of linear epitopes to generate >100 unique protein barcodes (Pro-Codes). Pro-Code-expressing vectors were introduced into cells and analyzed by CyTOF mass cytometry. Using just 14 antibodies, we detected 364 Pro-Code populations; establishing the largest set of protein-based reporters. By pairing each Pro-Code with a different CRISPR, we simultaneously analyzed multiple phenotypic markers, including phospho-signaling, on dozens of knockouts. Pro-Code/CRISPR screens found two interferon-stimulated genes, the immunoproteasome component Psmb8 and a chaperone Rtp4, are important for antigen-dependent immune editing of cancer cells and identified Socs1 as a negative regulator of Pd-l1. The Pro-Code technology enables simultaneous high-dimensional protein-level phenotyping of 100s of genes with single-cell resolution.


Subject(s)
CRISPR-Cas Systems , Flow Cytometry/methods , Genomics/methods , Mass Spectrometry/methods , Single-Cell Analysis/methods , Animals , Epitopes/chemistry , Epitopes/classification , Epitopes/genetics , HEK293 Cells , Humans , Immunophenotyping/methods , Jurkat Cells , Mice, Inbred BALB C , Proteome/chemistry , Proteome/classification , Proteome/genetics , THP-1 Cells
16.
Immunity ; 56(12): 2665-2669, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091944

ABSTRACT

Vaccines have stemmed many infectious diseases, but when SARS-CoV-2 emerged, traditional vaccine development would not have been fast enough. This year's Nobel Prize in Physiology or Medicine recognizes work that enabled the rapid development of mRNA vaccines, which halted the COVID-19 pandemic. The feat was a product of basic biological insights coupled with technological innovations, which have transformed vaccine design.


Subject(s)
COVID-19 , Vaccines , Humans , mRNA Vaccines , Pandemics/prevention & control , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Vaccines/genetics
17.
Immunity ; 56(4): 783-796.e7, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36827982

ABSTRACT

Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.


Subject(s)
Bone Marrow , Monocytes , Mice , Animals , Bone Marrow Cells , Fasting , Chemokines/metabolism
18.
Immunity ; 56(12): 2790-2802.e6, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091952

ABSTRACT

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing mitogen-activated protein kinase (MAPK)-activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some individuals with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we showed that LCH-ND was caused by myeloid cells that were clonal with peripheral LCH cells. Circulating BRAFV600E+ myeloid cells caused the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiated into senescent, inflammatory CD11a+ macrophages that accumulated in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced peripheral inflammation, brain parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent targetable mechanisms of LCH-ND.


Subject(s)
Histiocytosis, Langerhans-Cell , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/pathology , Histiocytosis, Langerhans-Cell/therapy , Brain/metabolism , Myeloid Cells/metabolism , Cell Differentiation
19.
Cell ; 169(4): 750-765.e17, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28475900

ABSTRACT

To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.


Subject(s)
Adenocarcinoma/immunology , Adenocarcinoma/pathology , Immunity, Innate , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Single-Cell Analysis/methods , Adenocarcinoma of Lung , Dendritic Cells/pathology , Humans , Killer Cells, Natural/pathology , Macrophages/pathology , T-Lymphocytes/pathology , Tumor Microenvironment
20.
Cell ; 167(2): 444-456.e14, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27716507

ABSTRACT

While conventional pathogenic protists have been extensively studied, there is an underappreciated constitutive protist microbiota that is an integral part of the vertebrate microbiome. The impact of these species on the host and their potential contributions to mucosal immune homeostasis remain poorly studied. Here, we show that the protozoan Tritrichomonas musculis activates the host epithelial inflammasome to induce IL-18 release. Epithelial-derived IL-18 promotes dendritic cell-driven Th1 and Th17 immunity and confers dramatic protection from mucosal bacterial infections. Along with its role as a "protistic" antibiotic, colonization with T. musculis exacerbates the development of T-cell-driven colitis and sporadic colorectal tumors. Our findings demonstrate a novel mutualistic host-protozoan interaction that increases mucosal host defenses at the cost of an increased risk of inflammatory disease.


Subject(s)
Colitis/immunology , Colitis/parasitology , Host-Parasite Interactions , Inflammasomes/immunology , Intestinal Mucosa/parasitology , Microbiota/immunology , Trichomonas Infections/immunology , Trichomonas/immunology , Animals , Colitis/microbiology , Dientamoeba/immunology , Immunity, Mucosal , Interleukin-18/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Mice, Inbred C57BL , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Symbiosis , Th1 Cells/immunology , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL