Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Brain ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021292

ABSTRACT

Epstein-Barr virus (EBV) infection has long been associated with the development of multiple sclerosis (MS). MS patients have elevated titers of EBV-specific antibodies in serum and show signs of CNS damage only after EBV infection. Regarding CD8+ T-cells, an elevated but ineffective response to EBV was suggested in MS patients, who present with a broader MHC-I-restricted EBV-specific T-cell receptor beta chain (TRB) repertoire compared to controls. It is not known whether this altered EBV response could be subject to dynamic changes, e.g., by approved MS therapies, and whether it is specific for MS. 1317 peripheral blood TRB repertoire samples of healthy donors (n=409), patients with MS (n=710) before and after treatment, patients with neuromyelitis optica spectrum disorder (n=87), myelin-oligodendrocyte-glycoprotein antibody-associated disease (n=64) and Susac's syndrome (n=47) were analyzed. Apart from MS, none of the evaluated diseases presented with a broader anti-EBV TRB repertoire. In MS patients undergoing autologous hematopoietic stem-cell transplantation, EBV reactivation coincided with elevated MHC-I-restricted EBV-specific TRB sequence matches. Therapy with ocrelizumab, teriflunomide or dimethyl fumarate reduced EBV-specific, but not CMV-specific MHC-I-restricted TRB sequence matches. Together, this data suggests that the aberrant MHC-I-restricted T-cell response directed against EBV is specific to MS with regard to NMO, MOGAD and Susac's Syndrome and that it is specifically modified by MS treatments interfering with EBV host cells or activated lymphocytes.

2.
Am J Physiol Cell Physiol ; 327(2): C438-C445, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38912735

ABSTRACT

The kynurenine pathway (KP) of tryptophan degradation generates several metabolites such as kynurenine (KYN) or kynurenic acid (KA) that serve as endogenous ligands of the aryl hydrocarbon receptor (AHR). Due to its distinct biological roles particularly modulating the immune system, the AHR is a current therapeutic target across different inflammation-related diseases. Here, we show an acute exercise-induced increase in AHR ligand availability on a systemic level and a kynurenine pathway activation in peripheral blood mononuclear cells (PBMCs). Concurrently, the AHR is activated in PBMCs following acute exercise. Exercise effects on both, kynurenic acid and AHR activation in PBMCs were greater in response to high-intensity interval exercise (HIIE) (50 min, six 3-min intervals at 90% V̇o2peak, and 3-min intervals at 50% V̇o2peak in between) compared with workload-matched moderate-intensity continuous exercise (MICE) (50 min). In conclusion, these data indicate a novel mechanistic link in how exercise modulates the immune system through the kynurenine pathway-AHR axis, potentially underlying exercise-induced benefits in various chronic diseases.NEW & NOTEWORTHY The findings of this study show that acute endurance exercise activates a receptor that has been described to integrate metabolic signals into the immune system. We uncover a potential mechanistic link on how exercise modulates the immune system through the kynurenine pathway-AHR axis, potentially underlying exercise-induced benefits in various chronic diseases and of relevance for other cell types.


Subject(s)
Kynurenic Acid , Kynurenine , Leukocytes, Mononuclear , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Kynurenine/metabolism , Male , Animals , Kynurenic Acid/metabolism , Kynurenic Acid/blood , Exercise/physiology , Mice , Mice, Inbred C57BL , Humans , Physical Conditioning, Animal/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Signal Transduction , Tryptophan/metabolism , Tryptophan/blood
3.
Basic Res Cardiol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110173

ABSTRACT

The erythrocyte S1P transporter Mfsd2b is also expressed in the heart. We hypothesized that S1P transport by Mfsd2b is involved in cardiac function. Hypertension-induced cardiac remodeling was induced by 4-weeks Angiotensin II (AngII) administration and assessed by echocardiography. Ca2+ transients and sarcomere shortening were examined in adult cardiomyocytes (ACM) from Mfsd2b+/+ and Mfsd2b-/- mice. Tension and force development were measured in skinned cardiac fibers. Myocardial gene expression was determined by real-time PCR, Protein Phosphatase 2A (PP2A) by enzymatic assay, and S1P by LC/MS, respectively. Msfd2b was expressed in the murine and human heart, and its deficiency led to higher cardiac S1P. Mfsd2b-/- mice had regular basal cardiac function but were protected against AngII-induced deterioration of left-ventricular function as evidenced by ~ 30% better stroke volume and cardiac index, and preserved ejection fraction despite similar increases in blood pressure. Mfsd2b-/- ACM exhibited attenuated Ca2+ mobilization in response to isoprenaline whereas contractility was unchanged. Mfsd2b-/- ACM showed no changes in proteins responsible for Ca2+ homeostasis, and skinned cardiac fibers exhibited reduced passive tension generation with preserved contractility. Verapamil abolished the differences in Ca2+ mobilization between Mfsd2b+/+ and Mfsd2b-/- ACM suggesting that S1P inhibits L-type-Ca2+ channels (LTCC). In agreement, intracellular S1P activated the inhibitory LTCC phosphatase PP2A in ACM and PP2A activity was increased in Mfsd2b-/- hearts. We suggest that myocardial S1P protects from hypertension-induced left-ventricular remodeling by inhibiting LTCC through PP2A activation. Pharmacologic inhibition of Mfsd2b may thus offer a novel approach to heart failure.

4.
Acta Neuropathol ; 147(1): 15, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38214778

ABSTRACT

Histopathological analysis stands as the gold standard for the identification and differentiation of inflammatory neuromuscular diseases. These disorders continue to constitute a diagnostic challenge due to their clinical heterogeneity, rarity and overlapping features. To establish standardized protocols for the diagnosis of inflammatory neuromuscular diseases, the development of cost-effective and widely applicable tools is crucial, especially in settings constrained by limited resources. The focus of this review is to emphasize the diagnostic value of major histocompatibility complex (MHC) and complement patterns in the immunohistochemical analysis of these diseases. We explore the immunological background of MHC and complement signatures that characterize inflammatory features, with a specific focus on idiopathic inflammatory myopathies. With this approach, we aim to provide a diagnostic algorithm that may improve and simplify the diagnostic workup based on a limited panel of stainings. Our approach acknowledges the current limitations in the field of inflammatory neuromuscular diseases, particularly the scarcity of large-scale, prospective studies that validate the diagnostic potential of these markers. Further efforts are needed to establish a consensus on the diagnostic protocol to effectively distinguish these diseases.


Subject(s)
Myositis , Neuromuscular Diseases , Humans , Prospective Studies , Neuromuscular Diseases/diagnosis , Major Histocompatibility Complex , Histocompatibility Antigens Class I/analysis
5.
Acta Neuropathol ; 147(1): 102, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38888758

ABSTRACT

Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.


Subject(s)
Biomarkers , Myasthenia Gravis , Humans , Myasthenia Gravis/blood , Myasthenia Gravis/diagnosis , Myasthenia Gravis/pathology , Myasthenia Gravis/metabolism , Biomarkers/blood , Biomarkers/metabolism , Male , Female , Middle Aged , Adult , Aged , Autoantibodies/blood , Receptors, Cholinergic/immunology , Receptors, Cholinergic/metabolism , Proteomics/methods , Cohort Studies , Young Adult , Proteinase Inhibitory Proteins, Secretory/blood , Machine Learning
6.
Brain Behav Immun ; 122: 202-215, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142423

ABSTRACT

BACKGROUND: Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease, whose primary hallmark is the occurrence of inflammatory lesions in white and grey matter structures. Increasing evidence in MS patients and respective murine models reported an impaired ionic homeostasis driven by inflammatory-demyelination, thereby profoundly affecting signal propagation. However, the impact of a focal inflammatory lesion on single-cell and network functionality has hitherto not been fully elucidated. OBJECTIVES: In this study, we sought to determine the consequences of a localized cortical inflammatory lesion on the excitability and firing pattern of thalamic neurons in the auditory system. Moreover, we tested the neuroprotective effect of Retigabine (RTG), a specific Kv7 channel opener, on disease outcome. METHODS: To resemble the human disease, we focally administered pro-inflammatory cytokines, TNF-α and IFN-γ, in the primary auditory cortex (A1) of MOG35-55 immunized mice. Thereafter, we investigated the impact of the induced inflammatory milieu on afferent thalamocortical (TC) neurons, by performing ex vivo recordings. Moreover, we explored the effect of Kv7 channel modulation with RTG on auditory information processing, using in vivo electrophysiological approaches. RESULTS: Our results revealed that a cortical inflammatory lesion profoundly affected the excitability and firing pattern of neighboring TC neurons. Noteworthy, RTG restored control-like values and TC tonotopic mapping. CONCLUSION: Our results suggest that RTG treatment might robustly mitigate inflammation-induced altered excitability and preserve ascending information processing.

7.
J Med Internet Res ; 26: e53297, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875696

ABSTRACT

BACKGROUND: Large language models (LLMs) have demonstrated impressive performances in various medical domains, prompting an exploration of their potential utility within the high-demand setting of emergency department (ED) triage. This study evaluated the triage proficiency of different LLMs and ChatGPT, an LLM-based chatbot, compared to professionally trained ED staff and untrained personnel. We further explored whether LLM responses could guide untrained staff in effective triage. OBJECTIVE: This study aimed to assess the efficacy of LLMs and the associated product ChatGPT in ED triage compared to personnel of varying training status and to investigate if the models' responses can enhance the triage proficiency of untrained personnel. METHODS: A total of 124 anonymized case vignettes were triaged by untrained doctors; different versions of currently available LLMs; ChatGPT; and professionally trained raters, who subsequently agreed on a consensus set according to the Manchester Triage System (MTS). The prototypical vignettes were adapted from cases at a tertiary ED in Germany. The main outcome was the level of agreement between raters' MTS level assignments, measured via quadratic-weighted Cohen κ. The extent of over- and undertriage was also determined. Notably, instances of ChatGPT were prompted using zero-shot approaches without extensive background information on the MTS. The tested LLMs included raw GPT-4, Llama 3 70B, Gemini 1.5, and Mixtral 8x7b. RESULTS: GPT-4-based ChatGPT and untrained doctors showed substantial agreement with the consensus triage of professional raters (κ=mean 0.67, SD 0.037 and κ=mean 0.68, SD 0.056, respectively), significantly exceeding the performance of GPT-3.5-based ChatGPT (κ=mean 0.54, SD 0.024; P<.001). When untrained doctors used this LLM for second-opinion triage, there was a slight but statistically insignificant performance increase (κ=mean 0.70, SD 0.047; P=.97). Other tested LLMs performed similar to or worse than GPT-4-based ChatGPT or showed odd triaging behavior with the used parameters. LLMs and ChatGPT models tended toward overtriage, whereas untrained doctors undertriaged. CONCLUSIONS: While LLMs and the LLM-based product ChatGPT do not yet match professionally trained raters, their best models' triage proficiency equals that of untrained ED doctors. In its current form, LLMs or ChatGPT thus did not demonstrate gold-standard performance in ED triage and, in the setting of this study, failed to significantly improve untrained doctors' triage when used as decision support. Notable performance enhancements in newer LLM versions over older ones hint at future improvements with further technological development and specific training.


Subject(s)
Emergency Medicine , Triage , Triage/methods , Triage/standards , Humans , Emergency Medicine/standards , Physicians/statistics & numerical data , Emergency Service, Hospital/standards , Language , Germany , Female
8.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255863

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) of still unclear etiology. In recent years, the search for biomarkers facilitating its diagnosis, prognosis, therapy response, and other parameters has gained increasing attention. In this regard, in a previous meta-analysis comprising 22 studies, we found that MS is associated with higher nitrite/nitrate (NOx) levels in the cerebrospinal fluid (CSF) compared to patients with non-inflammatory other neurological diseases (NIOND). However, many of the included studies did not distinguish between the different clinical subtypes of MS, included pre-treated patients, and inclusion criteria varied. As a follow-up to our meta-analysis, we therefore aimed to analyze the serum and CSF NOx levels in clinically well-defined cohorts of treatment-naïve MS patients compared to patients with somatic symptom disorder. To this end, we analyzed the serum and CSF levels of NOx in 117 patients (71 relapsing-remitting (RR) MS, 16 primary progressive (PP) MS, and 30 somatic symptom disorder). We found that RRMS and PPMS patients had higher serum NOx levels compared to somatic symptom disorder patients. This difference remained significant in the subgroup of MRZ-negative RRMS patients. In conclusion, the measurement of NOx in the serum might indeed be a valuable tool in supporting MS diagnosis.


Subject(s)
Autoimmune Diseases , Medically Unexplained Symptoms , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Nitrosative Stress , Central Nervous System
10.
Neurol Clin Pract ; 14(3): e200295, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715732

ABSTRACT

Background: Immune-mediated peripheral nervous system (PNS) disorders pose diagnostic and therapeutic challenges, necessitating collaborative, patient-centered care. Limited access to specialized centers leads to delayed diagnosis and care, as seen during the COVID-19 pandemic. To address these challenges, accessible specialized care is crucial. On-site support plays a vital role in advising and assisting patients and caregivers, enabling multidisciplinary care for PNS diseases. Recent Findings: The PNS Nurse Education Program tackles these complexities, using specialized nurses experienced in multiple sclerosis and Parkinson disease. Focusing on peripheral neuroimmunologic disorders, PNS nurses monitor disease severity, optimize communication, and provide therapeutic support in the recently started era of available immunotherapies. Collaboration with other healthcare sectors and support groups further enhances patient care. Implications for Practice: Ultimately, the PNS Nurse Education Program aims to bridge the gap between complex treatments and limited specialized care, improving patient outcomes and relieving burdens on patients, caregivers, and healthcare systems.

11.
NPJ Digit Med ; 7(1): 139, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789620

ABSTRACT

The 2019 German Digital Healthcare Act introduced the Digital Health Application program, known in German as 'Digitale Gesundheitsanwendungen' (DiGA). The program has established a pioneering model for integrating Digital Therapeutics (DTx) into a healthcare system with scalable and effective reimbursement strategies. To date, the continuous upward trend enabled by this framework has resulted in more than 374,000 DiGA prescriptions, increasingly cementing its role in the German healthcare system. This perspective provides a synthesis of the DiGA program's evolution since its inception three years ago, highlighting trends regarding prescriptions and pricing as well as criticisms and identified shortcomings. It further discusses forthcoming legislative amendments, including the anticipated integration of higher-risk medical devices, which have the potential to significantly transform the program. Despite encountering challenges related to effectiveness, evidence requirements, and integration within the healthcare system, the DiGA program continues to evolve and serves as a seminal example for the integration of DTx, offering valuable insights for healthcare systems globally.

12.
Mol Neurobiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652352

ABSTRACT

Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.

13.
Autoimmun Rev ; 23(4): 103528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492907

ABSTRACT

The occurrence of cerebral vasculitis in individuals with neurosarcoidosis (NS) is considered to be rare. Although the number of relevant publications has increased in recent years, evidence is mostly limited to case reports. To obtain a better understanding of this rare and severe manifestation of disease, we carried out a scoping review on cerebral vasculitis in patients diagnosed with NS. The results of the review indicate that the diagnosis of cerebral vasculitis in patients with NS is made especially in patients with systemic sarcoidosis. However, recurrent strokes in patients with NS remains the main indicator of cerebral vasculitis. A tissue biopsy is considered the gold standard to confirm the diagnosis despite occasional false-negative results. Glucocorticoids and steroid-sparing agents are the most successful current treatments. Favorable outcomes were observed with strategies targeting TNFα and B cells. The goal of this review is to summarize the current literature and treatment options for cerebral vasculitis in patients with NS.


Subject(s)
Central Nervous System Diseases , Sarcoidosis , Vasculitis, Central Nervous System , Humans , Sarcoidosis/diagnosis , Sarcoidosis/complications , Vasculitis, Central Nervous System/diagnosis , Vasculitis, Central Nervous System/etiology , Vasculitis, Central Nervous System/drug therapy , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/etiology , Glucocorticoids/therapeutic use
14.
Ther Adv Neurol Disord ; 17: 17562864241229325, 2024.
Article in English | MEDLINE | ID: mdl-38332854

ABSTRACT

Magnetic resonance imaging (MRI) of the brain and spinal cord plays a crucial role in the diagnosis and monitoring of multiple sclerosis (MS). There is conclusive evidence that brain and spinal cord MRI findings in early disease stages also provide relevant insight into individual prognosis. This includes prediction of disease activity and disease progression, the accumulation of long-term disability and the conversion to secondary progressive MS. The extent to which these MRI findings should influence treatment decisions remains a subject of ongoing discussion. The aim of this review is to present and discuss the current knowledge and scientific evidence regarding the utility of MRI at early MS disease stages for prognostic classification of individual patients. In addition, we discuss the current evidence regarding the use of MRI in order to predict treatment response. Finally, we propose a potential approach as to how MRI data may be categorized and integrated into early clinical decision making.


Can MRI help select appropriate therapy for recently diagnosed multiple sclerosis? MS is a chronic autoimmune disease of the brain and spinal cord that causes physical and cognitive disability. Initially, most people with MS (pwMS) experience attacks of new symptoms and periods of partial recovery; this is called relapsing-remitting MS (RRMS). RRMS transitions to secondary progressive MS (SPMS), where there is a gradual worsening of disability. MS medications dampen parts of the immune system. They reduce the risk of relapses and delay transition to SPMS if started early. Once a person has SPMS, treatment can slow but not stop further deterioration. MS medications vary in their effects on the immune system, level of efficacy, and treatment risks. The course of MS is highly individual. When starting therapy, it can therefore be difficult to decide whether a drug with lower or higher efficacy is required. Some of the acute and chronic inflammatory changes in MS are shown as focal lesions ('spots') on MRI of the brain and spinal cord. They are very useful for diagnosing MS and determining disease activity. Even if there are no relapses, new lesions indicate that a MS medication is not fully effective. In addition, MRI provides a snapshot of tissue damage that has accumulated up to the examination. At the time of diagnosis, MRI reflects the natural history of MS in the individual, even before the first attack, and contains prognostic information. We review studies that investigate an association between certain MRI findings obtained early after the initial attack and the later course of MS. We propose that these metrics can be applied to a concept of grading and staging of MS as well as estimating functional reserve. We review thresholds that identify pwMS at risk of disability progression and transition to SPMS, who should be recommended highly effective therapy first line. Leveraging the prognostic capabilities of MRI may support initial treatment decisions.

15.
JAMA Neurol ; 81(2): 179-186, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38227318

ABSTRACT

Importance: The temporal association between the occurrence of neurological diseases, many autoimmune diseases, and vaccination against SARS-CoV-2 has been topically interesting and remains hotly debated both in the medical literature and the clinic. Given the very low incidences of these events both naturally occurring and in relation to vaccination, it is challenging to determine with certainty whether there is any causative association and most certainly what the pathophysiology of that causation could be. Observations: Data from international cohorts including millions of vaccinated individuals suggest that there is a probable association between the adenovirus-vectored vaccines and Guillain-Barré syndrome (GBS). Further associations between other SARS-CoV-2 vaccines and GBS or Bell palsy have not been clearly demonstrated in large cohort studies, but the possible rare occurrence of Bell palsy following messenger RNA vaccination is a topic of interest. It is also yet to be clearly demonstrated that any other neurological diseases, such as central nervous system demyelinating disease or myasthenia gravis, have any causative association with vaccination against SARS-CoV-2 using any vaccine type, although it is possible that vaccination may rarely trigger a relapse or worsen symptoms or first presentation in already-diagnosed or susceptible individuals. Conclusions and Relevance: The associated risk between SARS-CoV-2 vaccination and GBS, and possibly Bell palsy, is slight, and this should not change the recommendation for individuals to be vaccinated. The same advice should be given to those with preexisting neurological autoimmune disease.


Subject(s)
Bell Palsy , COVID-19 , Guillain-Barre Syndrome , Myasthenia Gravis , Humans , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , COVID-19/prevention & control , Neoplasm Recurrence, Local , Vaccination/adverse effects , Guillain-Barre Syndrome/etiology
16.
Lancet Reg Health Eur ; 40: 100891, 2024 May.
Article in English | MEDLINE | ID: mdl-38585674

ABSTRACT

Multiple sclerosis (MS) as a chronic, degenerative autoimmune disease of the central nervous system has a longitudinal and heterogeneous course with increasing treatment options and risk profiles requiring constant monitoring of a growing number of parameters. Despite treatment guidelines, there is a lack of strategic and individualised monitoring pathways, including respective quality indicators (QIs). To address this, we systematically developed transparent, traceable, and measurable QIs for MS monitoring. Through literature review, expert discussions, and consensus-building, existing QIs were identified and refined. In a two-stage online Delphi process involving MS specialists (on average 53 years old and with 25 years of professional experience), the QIs were evaluated for content, clarity, and intelligibility, resulting in a set of 24 QIs and checklists to assess the quality of care. The final QIs provide a structured approach to document, monitor, and enhance the quality of care for people with MS across their treatment journey.

17.
Exp Neurol ; 371: 114572, 2024 01.
Article in English | MEDLINE | ID: mdl-37852467

ABSTRACT

Cuprizone (CPZ)-induced alterations in axonal myelination are associated with a period of neuronal hyperexcitability and increased activity of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in the thalamocortical (TC) system. Substances used for the treatment of multiple sclerosis (MS) have been shown to normalize neuronal excitability in CPZ-treated mice. Therefore, we aimed to examine the effects of diroximel fumarate (DRF) and the sphingosine 1-phospate receptor (S1PR) modulator siponimod on action potential firing and the inward current (Ih) carried by HCN ion channels in naive conditions and during different stages of de- and remyelination. Here, DRF application reduced Ih current density in ex vivo patch clamp recordings from TC neurons of the ventrobasal thalamic complex (VB), thereby counteracting the increase of Ih during early remyelination. Siponimod reduced Ih in VB neurons under control conditions but had no effect in neurons of the auditory cortex (AU). Furthermore, siponimod increased and decreased AP firing properties of neurons in VB and AU, respectively. Computational modeling revealed that both DRF and siponimod influenced thalamic bursting during early remyelination by delaying the onset and decreasing the interburst frequency. Thus, substances used in MS treatment normalize excitability in the TC system by influencing AP firing and Ih.


Subject(s)
Neuroprotective Agents , Remyelination , Mice , Animals , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Models, Theoretical
18.
Front Neurol ; 15: 1410673, 2024.
Article in English | MEDLINE | ID: mdl-38974686

ABSTRACT

Background: Previous research suggested that quadripulse (QPS)-induced synaptic plasticity is associated with both cognitive and motor function in patients with multiple sclerosis (MS) and does not appear to be reduced compared to healthy controls (HCs). Objective: This study aimed to explore the relationship between the degree of QPS-induced plasticity and clinically significant decline in motor and cognitive functions over time. We hypothesized that MS patients experiencing functional decline would exhibit lower levels of baseline plasticity compared to those without decline. Methods: QPS-induced plasticity was evaluated in 80 MS patients (56 with relapsing-remitting MS and 24 with progressive MS), and 69 age-, sex-, and education-matched HCs. Cognitive and motor functions, as well as overall disability status were evaluated annually over a median follow-up period of 2 years. Clinically meaningful change thresholds were predefined for each outcome measure. Linear mixed-effects models, Cox proportional hazard models, logistic regression, and receiver-operating characteristic analysis were applied to analyse the relationship between baseline plasticity and clinical progression in the symbol digit modalities test, brief visuospatial memory test revised (BVMT-R), nine-hole peg test (NHPT), timed 25-foot walk test, and expanded disability status scale. Results: Overall, the patient cohort showed no clinically relevant change in any functional outcome over time. Variability in performance was observed across time points in both patients and HCs. MS patients who experienced clinically relevant decline in manual dexterity and/or visuospatial learning and memory had significantly lower levels of synaptic plasticity at baseline compared to those without such decline (NHPT: ß = -0.25, p = 0.02; BVMT-R: ß = -0.50, p = 0.005). Receiver-operating characteristic analysis underscored the predictive utility of baseline synaptic plasticity in discerning between patients experiencing functional decline and those maintaining stability only for visuospatial learning and memory (area under the curve = 0.85). Conclusion: Our study suggests that QPS-induced plasticity could be linked to clinically relevant functional decline in patients with MS. However, to solidify these findings, longer follow-up periods are warranted, especially in cohorts with higher prevalences of functional decline. Additionally, the variability in cognitive performance in both patients with MS and HCs underscores the importance of conducting further research on reliable change based on neuropsychological tests.

19.
Front Neurol ; 15: 1370503, 2024.
Article in English | MEDLINE | ID: mdl-38988600

ABSTRACT

Background: This preliminary retrospective cohort study investigates the potential additive prophylactic effect of erenumab, a fully human monoclonal antibody that blocks the calcitonin gene-related peptide receptor, in combination with ongoing onabotulinumtoxin A (onaBoNT-A) treatment in patients suffering from chronic migraine. Methods: The study included 218 patients and investigated the effects of adding erenumab to the existing treatment regimen. The primary outcome was the MIDAS (Migraine Disability Assessment) score assessed 3 months after the introduction of erenumab. Results: The results indicated a significant improvement of the MIDAS score, suggesting a reduction in migraine-related disability following the addition of erenumab to onaBoNT-A. In the inter group comparison, dual therapy showed a significantly greater reduction of the MIDAS when compared to a switch from onaBoNT-A to erenumab monotherapy, but not compared to initiation of onaBoNT-A monotherapy. It is hypothesized that the observed additive effects are due to the independent modes of action of erenumab and onabotulinumtoxin A. Conclusion: This study suggests that the combination of erenumab with onaBoNT-A may offer an improved approach for the treatment of chronic migraine in selected patients. However, the results highlight the need for prospective, controlled studies to validate these findings and determine the optimal combination of treatments tailored to the individual patient.

20.
J Neurol ; 271(6): 3328-3339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38478032

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) is a rare disorder causing ischemic and hemorrhagic juvenile stroke. It is associated with the founder susceptibility variant p.R4810K in the RNF213 gene in East Asia. Our aim was to enhance understanding of MMD in so far poorly characterized Southeast Asians and exploring differences with Caucasian Europeans. METHODS: By retrospective analysis of medical records and systematic database search on PubMed for all published cases, we identified Southeast Asian patients with MMD. We extracted and pooled proportions using fixed-effects models. Our own cohort was tested for the East Asian RNF213 founder variant p.R4810K. One of our Southeast Asian patients underwent post-mortem histopathological examination. RESULTS: The study cohort comprised 32 Southeast Asians. Mean age at onset in the entire cohort was 32.5 ± 20.3 years (n = 24), 43.4 ± 8.7 years in patients admitted to our center (n = 11), and 23.4 ± 22.4 years in patients from the international literature (n = 13). Female-to-male ratio was 1.6:1. MMD predominantly affected bilateral anterior intracranial vessels. Cerebral ischemia outnumbered transient ischemic attacks (TIAs) and intracranial hemorrhage. TIAs, arterial hypertension and obesity were significantly less frequent in Southeast Asian patients compared to Caucasian Europeans. p.R4810K was absent in all examined Southeast Asians despite of typical histopathological signs of MMD in one autopsy case. CONCLUSION: Clinical and histopathological manifestations of MMD in Southeast Asians are similar to those in Caucasian Europeans. The genotype of MMD in Southeast Asians differs from that of most East Asian patients.


Subject(s)
Autopsy , Moyamoya Disease , Moyamoya Disease/genetics , Moyamoya Disease/ethnology , Moyamoya Disease/pathology , Humans , Male , Female , Adult , Middle Aged , Young Adult , Ubiquitin-Protein Ligases/genetics , Asia, Southeastern , Asian People/genetics , Asian People/ethnology , Adenosine Triphosphatases/genetics , Retrospective Studies , Adolescent , Southeast Asian People
SELECTION OF CITATIONS
SEARCH DETAIL