Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Annu Rev Biochem ; 86: 159-192, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28498721

ABSTRACT

Protein ubiquitination is one of the most powerful posttranslational modifications of proteins, as it regulates a plethora of cellular processes in distinct manners. Simple monoubiquitination events coexist with more complex forms of polyubiquitination, the latter featuring many different chain architectures. Ubiquitin can be subjected to further posttranslational modifications (e.g., phosphorylation and acetylation) and can also be part of mixed polymers with ubiquitin-like modifiers such as SUMO (small ubiquitin-related modifier) or NEDD8 (neural precursor cell expressed, developmentally downregulated 8). Together, cellular ubiquitination events form a sophisticated and versatile ubiquitin code. Deubiquitinases (DUBs) reverse ubiquitin signals with equally high sophistication. In this review, we conceptualize the many layers of specificity that DUBs encompass to control the ubiquitin code and discuss examples in which DUB specificity has been understood at the molecular level. We further discuss the many mechanisms of DUB regulation with a focus on those that modulate catalytic activity. Our review provides a framework to tackle lingering questions in DUB biology.


Subject(s)
Deubiquitinating Enzymes/metabolism , Eukaryotic Cells/metabolism , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitins/metabolism , Acetylation , Allosteric Regulation , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/genetics , Humans , Models, Molecular , NEDD8 Protein , Phosphorylation , Protein Binding , Protein Conformation , Proteolysis , Substrate Specificity , Sumoylation , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Ubiquitins/genetics
2.
Cell ; 154(1): 169-84, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23827681

ABSTRACT

Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1' and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/metabolism , Ovarian Neoplasms/enzymology , Ubiquitination , Catalysis , Catalytic Domain , Crystallography, X-Ray , Endopeptidases/genetics , Female , Humans , Models, Molecular , Ovarian Neoplasms/metabolism , Protein Structure, Tertiary , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism , Ubiquitins/metabolism
3.
Nature ; 572(7770): 533-537, 2019 08.
Article in English | MEDLINE | ID: mdl-31413367

ABSTRACT

Protein ubiquitination is a multi-functional post-translational modification that affects all cellular processes. Its versatility arises from architecturally complex polyubiquitin chains, in which individual ubiquitin moieties may be ubiquitinated on one or multiple residues, and/or modified by phosphorylation and acetylation1-3. Advances in mass spectrometry have enabled the mapping of individual ubiquitin modifications that generate the ubiquitin code; however, the architecture of polyubiquitin signals has remained largely inaccessible. Here we introduce Ub-clipping as a methodology by which to understand polyubiquitin signals and architectures. Ub-clipping uses an engineered viral protease, Lbpro∗, to incompletely remove ubiquitin from substrates and leave the signature C-terminal GlyGly dipeptide attached to the modified residue; this simplifies the direct assessment of protein ubiquitination on substrates and within polyubiquitin. Monoubiquitin generated by Lbpro∗ retains GlyGly-modified residues, enabling the quantification of multiply GlyGly-modified branch-point ubiquitin. Notably, we find that a large amount (10-20%) of ubiquitin in polymers seems to exist as branched chains. Moreover, Ub-clipping enables the assessment of co-existing ubiquitin modifications. The analysis of depolarized mitochondria reveals that PINK1/parkin-mediated mitophagy predominantly exploits mono- and short-chain polyubiquitin, in which phosphorylated ubiquitin moieties are not further modified. Ub-clipping can therefore provide insight into the combinatorial complexity and architecture of the ubiquitin code.


Subject(s)
Peptide Hydrolases/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Glycine/chemistry , Glycine/metabolism , HCT116 Cells , HeLa Cells , Humans , Mitophagy , Polyubiquitin/chemistry , Polyubiquitin/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Nature ; 538(7625): 402-405, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27732584

ABSTRACT

The post-translational modification of proteins with polyubiquitin regulates virtually all aspects of cell biology. Eight distinct chain linkage types co-exist in polyubiquitin and are independently regulated in cells. This 'ubiquitin code' determines the fate of the modified protein. Deubiquitinating enzymes of the ovarian tumour (OTU) family regulate cellular signalling by targeting distinct linkage types within polyubiquitin, and understanding their mechanisms of linkage specificity gives fundamental insights into the ubiquitin system. Here we reveal how the deubiquitinase Cezanne (also known as OTUD7B) specifically targets Lys11-linked polyubiquitin. Crystal structures of Cezanne alone and in complex with monoubiquitin and Lys11-linked diubiquitin, in combination with hydrogen-deuterium exchange mass spectrometry, enable us to reconstruct the enzymatic cycle in great detail. An intricate mechanism of ubiquitin-assisted conformational changes activates the enzyme, and while all chain types interact with the enzymatic S1 site, only Lys11-linked chains can bind productively across the active site and stimulate catalytic turnover. Our work highlights the plasticity of deubiquitinases and indicates that new conformational states can occur when a true substrate, such as diubiquitin, is bound at the active site.


Subject(s)
Deubiquitinating Enzymes/metabolism , Endopeptidases/metabolism , Lysine/metabolism , Polyubiquitin/metabolism , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/genetics , Deuterium Exchange Measurement , Endopeptidases/chemistry , Endopeptidases/genetics , Enzyme Activation , Humans , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Conformation , Substrate Specificity , Ubiquitination , Ubiquitins/metabolism
5.
Biochem J ; 473(20): 3563-3580, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27503909

ABSTRACT

Fbxo7 is a clinically relevant F-box protein, associated with both cancer and Parkinson's disease (PD). Additionally, SNPs within FBXO7 are correlated with alterations in red blood cell parameters. Point mutations within FBXO7 map within specific functional domains, including near its F-box domain and its substrate recruiting domains, suggesting that deficiencies in SCFFbxo7/PARK15 ubiquitin ligase activity are mechanistically linked to early-onset PD. To date, relatively few substrates of the ligase have been identified. These include HURP (hepatoma up-regulated protein), whose ubiquitination results in proteasome-mediated degradation, and c-IAP1 (inhibitor of apoptosis protein 1), TNF receptor-associated factor 2 (TRAF2), and NRAGE, which are not destabilized as a result of ubiquitination. None of these substrates have been linked directly to PD, nor has it been determined whether they would directly engage neuronal cell death pathways. To discover ubiquitinated substrates of SCFFbxo7 implicated more directly in PD aetiology, we conducted a high-throughput screen using protein arrays to identify new candidates. A total of 338 new targets were identified and from these we validated glycogen synthase kinase 3ß (Gsk3ß), which can phosphorylate α-synuclein, and translocase of outer mitochondrial membrane 20 (Tomm20), a mitochondrial translocase that, when ubiquitinated, promotes mitophagy, as SCFFbxo7 substrates both in vitro and in vivo Ubiquitin chain restriction analyses revealed that Fbxo7 modified Gsk3ß using K63 linkages. Our results indicate that Fbxo7 negatively regulates Gsk3ß activity, rather than its levels or localization. In addition, Fbxo7 ubiquitinated Tomm20, and its levels correlated with Fbxo7 expression, indicating a stabilizing effect. None of the PD-associated mutations in Fbxo7 impaired Tomm20 ubiquitination. Our findings demonstrate that SCFFbxo7 has an impact directly on two proteins implicated in pathological processes leading to PD.


Subject(s)
F-Box Proteins/metabolism , Membrane Transport Proteins/metabolism , Parkinson Disease/enzymology , Parkinson Disease/metabolism , Receptors, Cell Surface/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , F-Box Proteins/genetics , Fluorescent Antibody Technique , Glycogen Synthase Kinase 3 beta , HEK293 Cells , Humans , Immunoprecipitation , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Parkinson Disease/genetics , Point Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Cell Surface/genetics , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Ubiquitination/genetics , Ubiquitination/physiology
6.
Chembiochem ; 17(9): 816-20, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26996281

ABSTRACT

Deubiquitinating enzymes (DUBs) are proteases that fulfill crucial roles in the ubiquitin (Ub) system, by deconjugation of Ub from its targets and disassembly of polyUb chains. The specificity of a DUB towards one of the polyUb chain linkages largely determines the ultimate signaling function. We present a novel set of diubiquitin FRET probes, comprising all seven isopeptide linkages, for the absolute quantification of chain cleavage specificity of DUBs by means of Michaelis-Menten kinetics. Each probe is equipped with a FRET pair consisting of Rhodamine110 and tetramethylrhodamine to allow the fully synthetic preparation of the probes by SPPS and NCL. Our synthetic strategy includes the introduction of N,N'-Boc-protected 5-carboxyrhodamine as a convenient building block in peptide chemistry. We demonstrate the value of our probes by quantifying the linkage specificities of a panel of nine DUBs in a high-throughput manner.


Subject(s)
Deubiquitinating Enzymes/metabolism , Ubiquitin/metabolism , Chromatography, High Pressure Liquid , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Kinetics , Ubiquitination
7.
J Biol Chem ; 289(21): 14569-82, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24671417

ABSTRACT

Mitochondrial transport plays an important role in matching mitochondrial distribution to localized energy production and calcium buffering requirements. Here, we demonstrate that Miro1, an outer mitochondrial membrane (OMM) protein crucial for the regulation of mitochondrial trafficking and distribution, is a substrate of the PINK1/Parkin mitochondrial quality control system in human dopaminergic neuroblastoma cells. Moreover, Miro1 turnover on damaged mitochondria is altered in Parkinson disease (PD) patient-derived fibroblasts containing a pathogenic mutation in the PARK2 gene (encoding Parkin). By analyzing the kinetics of Miro1 ubiquitination, we further demonstrate that mitochondrial damage triggers rapid (within minutes) and persistent Lys-27-type ubiquitination of Miro1 on the OMM, dependent on PINK1 and Parkin. Proteasomal degradation of Miro1 is then seen on a slower time scale, within 2-3 h of the onset of ubiquitination. We find Miro ubiquitination in dopaminergic neuroblastoma cells is independent of Miro1 phosphorylation at Ser-156 but is dependent on the recently identified Ser-65 residue within Parkin that is phosphorylated by PINK1. Interestingly, we find that Miro1 can stabilize phospho-mutant versions of Parkin on the OMM, suggesting that Miro is also part of a Parkin receptor complex. Moreover, we demonstrate that Ser-65 in Parkin is critical for regulating Miro levels upon mitochondrial damage in rodent cortical neurons. Our results provide new insights into the ubiquitination-dependent regulation of the Miro-mediated mitochondrial transport machinery by PINK1/Parkin and also suggest that disruption of this regulation may be implicated in Parkinson disease pathogenesis.


Subject(s)
Mitochondrial Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , rho GTP-Binding Proteins/metabolism , Animals , COS Cells , Cell Line, Tumor , Cells, Cultured , Chlorocebus aethiops , Female , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Humans , Lysine/genetics , Lysine/metabolism , Male , Microscopy, Confocal , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Interference , Rats, Sprague-Dawley , Serine/genetics , Serine/metabolism , Ubiquitin-Protein Ligases/genetics , rho GTP-Binding Proteins/genetics
8.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091863

ABSTRACT

In transcription-coupled repair, stalled RNA polymerase II (Pol II) is recognized by CSB and CRL4CSA, which co-operate with UVSSSA and ELOF1 to recruit TFIIH for nucleotide excision repair (TC-NER). To explore the mechanism of TC-NER, we recapitulated this reaction in vitro. When a plasmid containing a site-specific lesion is transcribed in frog egg extract, error-free repair is observed that depends on CSB, CRL4CSA, UVSSA, and ELOF1. Repair also depends on STK19, a factor previously implicated in transcription recovery after UV exposure. A 1.9 Å cryo-electron microscopy structure shows that STK19 joins the TC-NER complex by binding CSA and the RPB1 subunit of Pol II. Furthermore, AlphaFold predicts that STK19 interacts with the XPD subunit of TFIIH, and disrupting this interface impairs cell-free repair. Molecular modeling suggests that STK19 positions TFIIH ahead of Pol II for lesion verification. In summary, our analysis of cell-free TC-NER suggests that STK19 couples RNA polymerase II stalling to downstream repair events.

9.
Cell Rep ; 42(2): 112125, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36807144

ABSTRACT

Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor and E3 ubiquitin ligase that promotes destruction of a broad range of pathogens. TRIM21 also underlies the antibody-dependent protein targeting method Trim-Away. Current evidence suggests that TRIM21 binding to antibodies leads to formation of a self-anchored K63 ubiquitin chain on the N terminus of TRIM21 that triggers the destruction of TRIM21, antibody, and target protein. Here, we report that addition of antibody and TRIM21 to Xenopus egg extracts promotes efficient degradation of endogenous target proteins, establishing cell-free Trim-Away as a powerful tool to interrogate protein function. Chemical methylation of TRIM21 had no effect on target proteolysis, whereas deletion of all lysine residues in targets abolished their ubiquitination and proteasomal degradation. These results demonstrate that target protein, but not TRIM21, polyubiquitination is required for Trim-Away, and they suggest that current models of TRIM21 function should be fundamentally revised.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Ubiquitin/metabolism , Antibodies/metabolism
10.
Biochim Biophys Acta Gen Subj ; 1865(1): 129754, 2021 01.
Article in English | MEDLINE | ID: mdl-33010352

ABSTRACT

BACKGROUND: Ubiquitously eXpressed Transcript isoform 2 (UXTV2) is a prefoldin-like protein involved in NF-κB signaling, apoptosis, and the androgen and estrogen response. UXT-V2 is a cofactor in the NF-κB transcriptional enhanceosome, and its knockdown inhibits TNF-α -induced NF-κB activation. Fbxo7 is an F-box protein that interacts with SKP1, Cullin1 and RBX1 proteins to form an SCF(Fbxo7) E3 ubiquitin ligase complex. Fbxo7 negatively regulates NF-κB signaling through TRAF2 and cIAP1 ubiquitination. METHODS: We combine co-immunoprecipitation, ubiquitination in vitro and in vivo, cycloheximide chase assay, ubiquitin chain restriction analysis and microscopy to investigate interaction between Fbxo7 and overexpressed UXT-V2-HA. RESULTS: The Ubl domain of Fbxo7 contributes to interaction with UXTV2. This substrate is polyubiquitinated by SCF(Fbxo7) with K48 and K63 ubiquitin chain linkages in vitro and in vivo. This post-translational modification decreases UXT-V2 stability and promotes its proteasomal degradation. We further show that UXTV1, an alternatively spliced isoform of UXT, containing 12 additional amino acids at the N-terminus as compared to UXTV2, also interacts with and is ubiquitinated by Fbxo7. Moreover, FBXO7 knockdown promotes UXT-V2 accumulation, and the overexpression of Fbxo7-ΔF-box protects UXT-V2 from proteasomal degradation and enhances the responsiveness of NF-κB reporter. We find that UXT-V2 colocalizes with Fbxo7 in the cell nucleus. CONCLUSIONS: Together, our study reveals that SCF(Fbxo7) mediates the proteasomal degradation of UXT-V2 causing the inhibition of the NF-κB signaling pathway. GENERAL SIGNIFICANCE: Discovering new substrates of E3 ubiquitin-ligase SCF(Fbxo7) contributes to understand its function in different diseases such as cancer and Parkinson.


Subject(s)
Cell Cycle Proteins/metabolism , F-Box Proteins/metabolism , Molecular Chaperones/metabolism , NF-kappa B/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Signal Transduction , Cell Line, Tumor , HEK293 Cells , Humans , Proteasome Endopeptidase Complex/metabolism , Protein Isoforms/metabolism , Proteolysis , Ubiquitination
11.
Nat Cell Biol ; 23(6): 595-607, 2021 06.
Article in English | MEDLINE | ID: mdl-34108663

ABSTRACT

Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4CSA ubiquitin ligase. How CRL4CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4CSA for optimal RNAPII ubiquitylation. Drug-genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication.


Subject(s)
DNA Damage , DNA Repair , Peptide Elongation Factor 1/metabolism , RNA Polymerase II/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , CRISPR-Cas Systems , Cell Line, Tumor , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Humans , Peptide Elongation Factor 1/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA Polymerase II/genetics , Transcription Elongation, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics
13.
Nat Commun ; 11(1): 2104, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355176

ABSTRACT

The response to DNA damage-stalled RNA polymerase II (RNAPIIo) involves the assembly of the transcription-coupled repair (TCR) complex on actively transcribed strands. The function of the TCR proteins CSB, CSA and UVSSA and the manner in which the core DNA repair complex, including transcription factor IIH (TFIIH), is recruited are largely unknown. Here, we define the assembly mechanism of the TCR complex in human isogenic knockout cells. We show that TCR is initiated by RNAPIIo-bound CSB, which recruits CSA through a newly identified CSA-interaction motif (CIM). Once recruited, CSA facilitates the association of UVSSA with stalled RNAPIIo. Importantly, we find that UVSSA is the key factor that recruits the TFIIH complex in a manner that is stimulated by CSB and CSA. Together these findings identify a sequential and highly cooperative assembly mechanism of TCR proteins and reveal the mechanism for TFIIH recruitment to DNA damage-stalled RNAPIIo to initiate repair.


Subject(s)
Carrier Proteins/metabolism , DNA Damage , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Polymerase II/metabolism , Transcription Factor TFIIH/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , DNA Repair , Humans , Transcription, Genetic , Ultraviolet Rays , Xenopus laevis
14.
Cell Chem Biol ; 23(4): 472-82, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27066941

ABSTRACT

Ubiquitin chains are important post-translational modifications that control a large number of cellular processes. Chains can be formed via different linkages, which determines the type of signal they convey. Deubiquitylating enzymes (DUBs) regulate ubiquitylation status by trimming or removing chains from attached proteins. DUBs can contain several ubiquitin-binding pockets, which confer specificity toward differently linked chains. Most tools for monitoring DUB specificity target binding pockets on opposing sides of the active site; however, some DUBs contain additional pockets. Therefore, reagents targeting additional pockets are essential to fully understand linkage specificity. We report the development of active site-directed probes and fluorogenic substrates, based on non-hydrolyzable diubiquitin, that are equipped with a C-terminal warhead or a fluorogenic activity reporter moiety. We demonstrate that various DUBs in lysates display differential reactivity toward differently linked diubiquitin probes, as exemplified by the proteasome-associated DUB USP14. In addition, OTUD2 and OTUD3 show remarkable linkage-specific reactivity with our diubiquitin-based reagents.


Subject(s)
Fluorescent Dyes/chemistry , Lymphoma/metabolism , Peptide Hydrolases/metabolism , Ubiquitins/chemistry , Animals , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Lymphoma/pathology , Mice , Ubiquitination , Ubiquitins/chemical synthesis , Ubiquitins/metabolism
15.
Nat Protoc ; 10(2): 349-361, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25633630

ABSTRACT

Protein ubiquitination is a versatile protein modification that regulates virtually all cellular processes. This versatility originates from polyubiquitin chains, which can be linked in eight distinct ways. The combinatorial complexity of eight linkage types in homotypic (one chain type per polymer) and heterotypic (multiple linkage types per polymer) chains poses significant problems for biochemical analysis. Here we describe UbiCRest, in which substrates (ubiquitinated proteins or polyubiquitin chains) are treated with a panel of linkage-specific deubiquitinating enzymes (DUBs) in parallel reactions, followed by gel-based analysis. UbiCRest can be used to show that a protein is ubiquitinated, to identify which linkage type(s) are present on polyubiquitinated proteins and to assess the architecture of heterotypic polyubiquitin chains. DUBs used in UbiCRest can be obtained commercially; however, we include details for generating a toolkit of purified DUBs and for profiling their linkage preferences in vitro. UbiCRest is a qualitative method that yields insights into ubiquitin chain linkage types and architecture within hours, and it can be performed on western blotting quantities of endogenously ubiquitinated proteins.


Subject(s)
Biochemistry/methods , Ubiquitin-Specific Proteases/metabolism , Ubiquitin/analysis , Ubiquitinated Proteins/analysis , Ubiquitinated Proteins/chemistry , Blotting, Western , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin-Specific Proteases/chemistry , Ubiquitination
16.
Mol Biol Cell ; 26(24): 4325-32, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26446837

ABSTRACT

The ubiquitin proteasome system (UPS) directs programmed destruction of key cellular regulators via posttranslational modification of its targets with polyubiquitin chains. These commonly contain Lys-48 (K48)-directed ubiquitin linkages, but chains containing atypical Lys-11 (K11) linkages also target substrates to the proteasome--for example, to regulate cell cycle progression. The ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C) controls mitotic exit. In higher eukaryotes, the APC/C works with the E2 enzyme UBE2S to assemble K11 linkages in cells released from mitotic arrest, and these are proposed to constitute an improved proteolytic signal during exit from mitosis. We tested this idea by correlating quantitative measures of in vivo K11-specific ubiquitination of individual substrates, including Aurora kinases, with their degradation kinetics tracked at the single-cell level. All anaphase substrates tested by this methodology are stabilized by depletion of K11 linkages via UBE2S knockdown, even if the same substrates are significantly modified with K48-linked polyubiquitin. Specific examination of substrates depending on the APC/C coactivator Cdh1 for their degradation revealed Cdh1-dependent enrichment of K11 chains on these substrates, whereas other ubiquitin linkages on the same substrates added during mitotic exit were Cdh1-independent. Therefore we show that K11 linkages provide the APC/C with a means to regulate the rate of substrate degradation in a coactivator-specified manner.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase/physiology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Aurora Kinases/metabolism , Cell Cycle/physiology , Cell Line, Tumor , HeLa Cells , Humans , Lysine/metabolism , Protein Processing, Post-Translational , Proteolysis , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
17.
Nat Commun ; 4: 1569, 2013.
Article in English | MEDLINE | ID: mdl-23463012

ABSTRACT

Protein ubiquitination is a highly versatile post-translational modification that regulates as diverse processes as protein degradation and kinase activation. Deubiquitinases hydrolyse ubiquitin modifications from proteins and are hence key regulators of the ubiquitin system. Ovarian tumour deubiquitinases comprise a family of fourteen human enzymes, many of which regulate cellular signalling pathways. Ovarian tumour deubiquitinases are cysteine proteases that cleave polyubiquitin chains in vitro and in cells, but little is currently known about their regulation. Here we show that ovarian tumour deubiquitinases are susceptible to reversible oxidation of the catalytic cysteine residue. High-resolution crystal structures of the catalytic domain of A20 in four different oxidation states reveal that the reversible form of A20 oxidation is a cysteine sulphenic acid intermediate, which is stabilised by the architecture of the catalytic centre. Using chemical tools to detect sulphenic acid intermediates, we show that many ovarian tumour deubiquitinases undergo reversible oxidation upon treatment with H2O2, revealing a new mechanism to regulate deubiquitinase activity.


Subject(s)
DNA-Binding Proteins/metabolism , Endopeptidases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Ovarian Neoplasms/enzymology , Amino Acid Sequence , Biocatalysis/drug effects , Crystallography, X-Ray , Cysteine/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , Enzyme Activation/drug effects , Female , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/chemistry , Molecular Sequence Data , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Oxidation-Reduction/drug effects , Protein Structure, Tertiary , Reducing Agents/pharmacology , Sulfenic Acids/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3
18.
Nat Struct Mol Biol ; 19(1): 62-71, 2011 Dec 11.
Article in English | MEDLINE | ID: mdl-22157957

ABSTRACT

Eight different types of ubiquitin linkages are present in eukaryotic cells that regulate diverse biological processes. Proteins that mediate specific assembly and disassembly of atypical Lys6, Lys27, Lys29 and Lys33 linkages are mainly unknown. We here reveal how the human ovarian tumor (OTU) domain deubiquitinase (DUB) TRABID specifically hydrolyzes both Lys29- and Lys33-linked diubiquitin. A crystal structure of the extended catalytic domain reveals an unpredicted ankyrin repeat domain that precedes an A20-like catalytic core. NMR analysis identifies the ankyrin domain as a new ubiquitin-binding fold, which we have termed AnkUBD, and DUB assays in vitro and in vivo show that this domain is crucial for TRABID efficiency and linkage specificity. Our data are consistent with AnkUBD functioning as an enzymatic S1' ubiquitin-binding site, which orients a ubiquitin chain so that Lys29 and Lys33 linkages are cleaved preferentially.


Subject(s)
Ankyrin Repeat , Endopeptidases/chemistry , Protein Structure, Tertiary , Ubiquitin/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Blotting, Western , COS Cells , Catalytic Domain , Chlorocebus aethiops , Crystallography, X-Ray , Endopeptidases/genetics , Endopeptidases/metabolism , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Lysine/metabolism , Magnetic Resonance Spectroscopy , Microscopy, Confocal , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Sequence Homology, Amino Acid , Ubiquitin Thiolesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL