Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell ; 184(2): 323-333.e9, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33306959

ABSTRACT

The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/µL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Cell Phone/instrumentation , Optical Imaging/methods , RNA, Viral/analysis , Viral Load/methods , Animals , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/instrumentation , CRISPR-Cas Systems , Cell Line , Coronavirus Nucleocapsid Proteins/genetics , Humans , Nasopharynx/virology , Optical Imaging/instrumentation , Phosphoproteins/genetics , Point-of-Care Testing , RNA Interference , RNA, Viral/genetics , Sensitivity and Specificity , Viral Load/economics , Viral Load/instrumentation
2.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Article in English | MEDLINE | ID: mdl-37291385

ABSTRACT

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Multiomics , Blood-Brain Barrier/metabolism , Alzheimer Disease/genetics , Fibrinogen
4.
Nat Immunol ; 21(5): 513-524, 2020 05.
Article in English | MEDLINE | ID: mdl-32284594

ABSTRACT

Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Gene Expression Profiling/methods , Microglia/physiology , Multiple Sclerosis/genetics , Neurogenic Inflammation/genetics , Animals , Antioxidants/therapeutic use , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Regulatory Networks , High-Throughput Screening Assays , Humans , Immunity, Innate , Isoxazoles/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Multiple Sclerosis/drug therapy , Neurogenic Inflammation/drug therapy , Oxidative Stress , Sequence Analysis, RNA , Single-Cell Analysis
5.
Nat Immunol ; 19(11): 1212-1223, 2018 11.
Article in English | MEDLINE | ID: mdl-30323343

ABSTRACT

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.


Subject(s)
Antibodies, Monoclonal/immunology , Fibrinogen/antagonists & inhibitors , Neurodegenerative Diseases/immunology , Animals , Epitopes , Humans , Inflammation/immunology , Mice , Rats
6.
Brain ; 144(8): 2291-2301, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34426831

ABSTRACT

Extrinsic inhibitors at sites of blood-brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.


Subject(s)
Blood-Brain Barrier/drug effects , Bone Morphogenetic Protein Receptors/antagonists & inhibitors , Oligodendroglia/drug effects , Remyelination/drug effects , Spinal Cord/drug effects , Animals , Blood-Brain Barrier/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/drug effects , Homeostasis/drug effects , Mice , Mice, Transgenic , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Spinal Cord/metabolism
7.
J Biol Chem ; 287(8): 5253-66, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22158868

ABSTRACT

Apolipoprotein E4 (apoE4), the major genetic risk factor for late onset Alzheimer disease, assumes a pathological conformation, intramolecular domain interaction. ApoE4 domain interaction mediates the detrimental effects of apoE4, including decreased mitochondrial cytochrome c oxidase subunit 1 levels, reduced mitochondrial motility, and reduced neurite outgrowth in vitro. Mutant apoE4 (apoE4-R61T) lacks domain interaction, behaves like apoE3, and does not cause detrimental effects. To identify small molecules that inhibit domain interaction (i.e. structure correctors) and reverse the apoE4 detrimental effects, we established a high throughput cell-based FRET primary assay that determines apoE4 domain interaction and secondary cell- and function-based assays. Screening a ChemBridge library with the FRET assay identified CB9032258 (a phthalazinone derivative), which inhibits domain interaction in neuronal cells. In secondary functional assays, CB9032258 restored mitochondrial cytochrome c oxidase subunit 1 levels and rescued impairments of mitochondrial motility and neurite outgrowth in apoE4-expressing neuronal cells. These benefits were apoE4-specific and dose-dependent. Modifying CB9032258 yielded well defined structure-activity relationships and more active compounds with enhanced potencies in the FRET assay (IC(50) of 23 and 116 nm, respectively). These compounds efficiently restored functional activities of apoE4-expressing cells in secondary assays. An EPR binding assay showed that the apoE4 structure correction resulted from direct interaction of a phthalazinone. With these data, a six-feature pharmacophore model was constructed for future drug design. Our results serve as a proof of concept that pharmacological intervention with apoE4 structure correctors negates apoE4 detrimental effects in neuronal cells and could be further developed as an Alzheimer disease therapeutic.


Subject(s)
Apolipoprotein E4/antagonists & inhibitors , Apolipoprotein E4/metabolism , Neurons/cytology , Neurons/drug effects , Small Molecule Libraries/pharmacology , Apolipoprotein E4/chemistry , Cell Line , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Models, Molecular , Neurons/metabolism , Phthalazines/chemistry , Phthalazines/pharmacology , Protein Structure, Tertiary , Reproducibility of Results , Small Molecule Libraries/chemistry , Structure-Activity Relationship
8.
J Biol Chem ; 286(19): 17217-26, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21454574

ABSTRACT

Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer disease (AD) and likely contributes to neuropathology through various pathways. Here we report that the intracellular trafficking of apoE4 is impaired in Neuro-2a cells and primary neurons, as shown by measuring fluorescence recovery after photobleaching. In Neuro-2a cells, more apoE4 than apoE3 molecules remained immobilized in the endoplasmic reticulum (ER) and the Golgi apparatus, and the lateral motility of apoE4 was significantly lower in the Golgi apparatus (but not in the ER) than that of apoE3. Likewise, the immobile fraction was larger, and the lateral motility was lower for apoE4 than apoE3 in mouse primary hippocampal neurons. ApoE4 with the R61T mutation, which abolishes apoE4 domain interaction, was less immobilized, and its lateral motility was comparable with that of apoE3. The trafficking impairment of apoE4 was also rescued by disrupting domain interaction with the small-molecule structure correctors GIND25 and PH002. PH002 also rescued apoE4-induced impairments of neurite outgrowth in Neuro-2a cells and dendritic spine development in primary neurons. ApoE4 did not affect trafficking of amyloid precursor protein, another AD-related protein, through the secretory pathway. Thus, domain interaction renders more newly synthesized apoE4 molecules immobile and slows their trafficking along the secretory pathway. Correcting the pathological structure of apoE4 by disrupting domain interaction is a potential therapeutic approach to treat or prevent AD related to apoE4.


Subject(s)
Apolipoprotein E4/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Biological Transport , Cell Line , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Fluorescence Recovery After Photobleaching , Golgi Apparatus/metabolism , Hippocampus/cytology , Humans , Mice , Models, Biological , Mutation , Neurons/metabolism
9.
Cell Rep ; 35(6): 109105, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979618

ABSTRACT

Genome engineering of primary human cells with CRISPR-Cas9 has revolutionized experimental and therapeutic approaches to cell biology, but human myeloid-lineage cells have remained largely genetically intractable. We present a method for the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) complexes by nucleofection directly into CD14+ human monocytes purified from peripheral blood, leading to high rates of precise gene knockout. These cells can be efficiently differentiated into monocyte-derived macrophages or dendritic cells. This process yields genetically edited cells that retain transcript and protein markers of myeloid differentiation and phagocytic function. Genetic ablation of the restriction factor SAMHD1 increased HIV-1 infection >50-fold, demonstrating the power of this system for genotype-phenotype interrogation. This fast, flexible, and scalable platform can be used for genetic studies of human myeloid cells in immune signaling, inflammation, cancer immunology, host-pathogen interactions, and beyond, and could facilitate the development of myeloid cellular therapies.


Subject(s)
CRISPR-Cas Systems/genetics , Genome/genetics , Myeloid Cells/metabolism , Ribonucleoproteins/metabolism , Animals , Humans , Mice
10.
Stem Cell Reports ; 9(4): 1221-1233, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28966121

ABSTRACT

Lowering total tau levels is an attractive therapeutic strategy for Alzheimer's disease and other tauopathies. High-throughput screening in neurons derived from human induced pluripotent stem cells (iPSCs) is a powerful tool to identify tau-targeted therapeutics. However, such screens have been hampered by heterogeneous neuronal production, high cost and low yield, and multi-step differentiation procedures. We engineered an isogenic iPSC line that harbors an inducible neurogenin 2 transgene, a transcription factor that rapidly converts iPSCs to neurons, integrated at the AAVS1 locus. Using a simplified two-step protocol, we differentiated these iPSCs into cortical glutamatergic neurons with minimal well-to-well variability. We developed a robust high-content screening assay to identify tau-lowering compounds in LOPAC and identified adrenergic receptors agonists as a class of compounds that reduce endogenous human tau. These techniques enable the use of human neurons for high-throughput screening of drugs to treat neurodegenerative disease.


Subject(s)
Cell Differentiation , Drug Discovery , Gene Expression Regulation/drug effects , High-Throughput Screening Assays , Induced Pluripotent Stem Cells/cytology , Neurons/drug effects , Neurons/metabolism , tau Proteins/genetics , Cell Line , Cell Survival , Cells, Cultured , Drug Discovery/methods , Drug Evaluation, Preclinical , Gene Expression , Gene Order , Genetic Vectors/genetics , Glutamine/metabolism , Humans , Membrane Potentials , Neurons/cytology , tau Proteins/metabolism
11.
Neuron ; 96(5): 1003-1012.e7, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29103804

ABSTRACT

Blood-brain barrier (BBB) disruption alters the composition of the brain microenvironment by allowing blood proteins into the CNS. However, whether blood-derived molecules serve as extrinsic inhibitors of remyelination is unknown. Here we show that the coagulation factor fibrinogen activates the bone morphogenetic protein (BMP) signaling pathway in oligodendrocyte progenitor cells (OPCs) and suppresses remyelination. Fibrinogen induces phosphorylation of Smad 1/5/8 and inhibits OPC differentiation into myelinating oligodendrocytes (OLs) while promoting an astrocytic fate in vitro. Fibrinogen effects are rescued by BMP type I receptor inhibition using dorsomorphin homolog 1 (DMH1) or CRISPR/Cas9 activin A receptor type I (ACVR1) knockout in OPCs. Fibrinogen and the BMP target Id2 are increased in demyelinated multiple sclerosis (MS) lesions. Therapeutic depletion of fibrinogen decreases BMP signaling and enhances remyelination in vivo. Targeting fibrinogen may be an upstream therapeutic strategy to promote the regenerative potential of CNS progenitors in diseases with remyelination failure.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Fibrinogen/pharmacology , Oligodendrocyte Precursor Cells/metabolism , Remyelination/drug effects , Activin Receptors, Type I/drug effects , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Animals , Blood Vessels/drug effects , Blood Vessels/pathology , Fibrinogen/antagonists & inhibitors , Lysophosphatidylcholines/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/drug effects , Plasmids/genetics , Signal Transduction/drug effects
12.
Nat Commun ; 6: 8164, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26353940

ABSTRACT

Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood-brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b(+) antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity.


Subject(s)
Autoimmunity/immunology , Brain/immunology , Demyelinating Diseases/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Fibrinogen/immunology , Genes, MHC Class II/immunology , Macrophages/immunology , Spinal Cord/immunology , Th1 Cells/immunology , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Animals , Antigen Presentation/drug effects , Antigen Presentation/genetics , Antigen Presentation/immunology , Autoimmunity/drug effects , Autoimmunity/genetics , Blood-Brain Barrier , Brain/drug effects , Brain/metabolism , Brain/pathology , CD11b Antigen/genetics , CD11b Antigen/immunology , CX3C Chemokine Receptor 1 , Cell Proliferation , Chemokine CCL2/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Chemokines , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Demyelinating Diseases/genetics , Fibrin , Fibrinogen/pharmacology , Flow Cytometry , Gene Expression Profiling , Genes, MHC Class II/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Immunohistochemistry , Mice , Mice, Knockout , Microglia , Myelin-Oligodendrocyte Glycoprotein/immunology , Rats , Receptors, Antigen, T-Cell/immunology , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL