Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Publication year range
1.
Nature ; 615(7954): 813-816, 2023 03.
Article in English | MEDLINE | ID: mdl-36991189

ABSTRACT

The proton is one of the main building blocks of all visible matter in the Universe1. Among its intrinsic properties are its electric charge, mass and spin2. These properties emerge from the complex dynamics of its fundamental constituents-quarks and gluons-described by the theory of quantum chromodynamics3-5. The electric charge and spin of protons, which are shared among the quarks, have been investigated previously using electron scattering2. An example is the highly precise measurement of the electric charge radius of the proton6. By contrast, little is known about the inner mass density of the proton, which is dominated by the energy carried by gluons. Gluons are hard to access using electron scattering because they do not carry an electromagnetic charge. Here we investigated the gravitational density of gluons using a small colour dipole, through the threshold photoproduction of the J/ψ particle. We determined the gluonic gravitational form factors of the proton7,8 from our measurement. We used a variety of models9-11 and determined, in all cases, a mass radius that is notably smaller than the electric charge radius. In some, but not all cases, depending on the model, the determined radius agrees well with first-principle predictions from lattice quantum chromodynamics12. This work paves the way for a deeper understanding of the salient role of gluons in providing gravitational mass to visible matter.

2.
Nature ; 611(7935): 265-270, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36261531

ABSTRACT

The visible world is founded on the proton, the only composite building block of matter that is stable in nature. Consequently, understanding the formation of matter relies on explaining the dynamics and the properties of the proton's bound state. A fundamental property of the proton involves the response of the system to an external electromagnetic field. It is characterized by the electromagnetic polarizabilities1 that describe how easily the charge and magnetization distributions inside the system are distorted by the electromagnetic field. Moreover, the generalized polarizabilities2 map out the resulting deformation of the densities in a proton subject to an electromagnetic field. They disclose essential information about the underlying system dynamics and provide a key for decoding the proton structure in terms of the theory of the strong interaction that binds its elementary quark and gluon constituents. Of particular interest is a puzzle in the electric generalized polarizability of the proton that remains unresolved for two decades2. Here we report measurements of the proton's electromagnetic generalized polarizabilities at low four-momentum transfer squared. We show evidence of an anomaly to the behaviour of the proton's electric generalized polarizability that contradicts the predictions of nuclear theory and derive its signature in the spatial distribution of the induced polarization in the proton. The reported measurements suggest the presence of a new, not-yet-understood dynamical mechanism in the proton and present notable challenges to the nuclear theory.

3.
Phys Rev Lett ; 123(2): 022501, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386522

ABSTRACT

We present extractions of the nucleon nonsinglet moments utilizing new precision data on the deuteron F_{2} structure function at large Bjorken-x determined via the Rosenbluth separation technique at Jefferson Lab Experimental Hall C. These new data are combined with a complementary set of data on the proton previously measured in Hall C at similar kinematics and world datasets on the proton and deuteron at lower x measured at SLAC and CERN. The new Jefferson Lab data provide coverage of the upper third of the x range, crucial for precision determination of the higher moments. In contrast to previous extractions, these moments have been corrected for nuclear effects in the deuteron using a new global fit to the deuteron and proton data. The obtained experimental moments represent an order of magnitude improvement in precision over previous extractions using high x data. Moreover, recent exciting developments in lattice QCD calculations provide a first ever comparison of these new experimental results with calculations of moments carried out at the physical pion mass, as well as a new approach that first calculates the quark distributions directly before determining moments.

4.
Phys Rev Lett ; 119(16): 162501, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29099223

ABSTRACT

The charge and magnetic form factors, F_{C} and F_{M}, respectively, of ^{3}He are extracted in the kinematic range 25 fm^{-2}≤Q^{2}≤61 fm^{-2} from elastic electron scattering by detecting ^{3}He recoil nuclei and scattered electrons in coincidence with the two High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements find evidence for the existence of a second diffraction minimum for the magnetic form factor at Q^{2}=49.3 fm^{-2} and for the charge form factor at Q^{2}=62.0 fm^{-2}. Both minima are predicted to exist in the Q^{2} range accessible by this Jefferson Lab experiment. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.

6.
Phys Rev Lett ; 112(13): 132503, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24745410

ABSTRACT

The charge form factor of 4He has been extracted in the range 29 fm(-2) ≤ Q2 ≤ 77 fm(-2) from elastic electron scattering, detecting 4He recoil nuclei and electrons in coincidence with the high resolution spectrometers of the Hall A Facility of Jefferson Lab. The measurements have uncovered a second diffraction minimum for the form factor, which was predicted in the Q2 range of this experiment. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the few-body problem.

7.
Phys Rev Lett ; 107(26): 262501, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22243152

ABSTRACT

The (2)H(e,e'p)n cross section at a momentum transfer of 3.5 (GeV/c)(2) was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle θ(nq) and to extract missing momentum distributions for fixed values of θ(nq) up to 0.55 GeV/c. In the region of 35°≤θ(nq)≤45° recent calculations, which predict that final-state interactions are small, agree reasonably well with the experimental data. Therefore, these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electrodisintegration.

8.
Nat Commun ; 12(1): 1759, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33741952

ABSTRACT

The neutron is a cornerstone in our depiction of the visible universe. Despite the neutron zero-net electric charge, the asymmetric distribution of the positively- (up) and negatively-charged (down) quarks, a result of the complex quark-gluon dynamics, lead to a negative value for its squared charge radius, [Formula: see text]. The precise measurement of the neutron's charge radius thus emerges as an essential part of unraveling its structure. Here we report on a [Formula: see text] measurement, based on the extraction of the neutron electric form factor, [Formula: see text], at low four-momentum transfer squared (Q2) by exploiting the long known connection between the N → Δ quadrupole transitions and the neutron electric form factor. Our result, [Formula: see text], addresses long standing unresolved discrepancies in the [Formula: see text] determination. The dynamics of the strong nuclear force can be viewed through the precise picture of the neutron's constituent distributions that result into the non-zero [Formula: see text] value.

10.
Phys Rev Lett ; 68(15): 2293-2296, 1992 Apr 13.
Article in English | MEDLINE | ID: mdl-10045358
14.
Phys Rev Lett ; 101(18): 182502, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18999823

ABSTRACT

We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_{1} of the neutron and 3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c);{2}. Global duality is observed for the spin-structure function g_{1} down to at least Q;{2}=1.8 (GeV/c);{2} in both targets. We have also formed the photon-nucleon asymmetry A1 in the resonance region for 3He and found no strong Q2 dependence above 2.2 (GeV/c);{2}.

15.
Phys Rev Lett ; 99(20): 202002, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18233135

ABSTRACT

High-precision measurements of the proton elastic form-factor ratio, mu pG p E/G p M, have been made at four-momentum transfer, Q2, values between 0.2 and 0.5 GeV2. The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q2 range the deviation from unity is primarily due to G p E being smaller than expected.

16.
Phys Rev Lett ; 99(24): 242501, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18233443

ABSTRACT

The present experiment exploits the interference between the deeply virtual Compton scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e,e'gamma)X cross section measured at Q2=1.9 GeV2 and xB=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to E_{q}, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

17.
Phys Rev Lett ; 98(18): 182302, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17501566

ABSTRACT

We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

18.
Phys Rev Lett ; 96(2): 022003, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16486563

ABSTRACT

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q2 = 0.091 GeV2 . From these data, for the first time, the strange electric form factor of the nucleon G(E)s can be isolated. The measured asymmetry of A(PV) = (6.72 +/- 0.84(stat) +/- 0.21(syst) x 10(-6) yields a value of G(E)s = -0.038 +/- 0.042(stat) +/- 0.010(syst), consistent with zero.

19.
Phys Rev Lett ; 97(26): 262002, 2006 Dec 31.
Article in English | MEDLINE | ID: mdl-17280421

ABSTRACT

We present the first measurements of the e[over -->]p-->epgamma cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region. The Q(2) dependence (from 1.5 to 2.3 GeV(2)) of the helicity-dependent cross section indicates the twist-2 dominance of DVCS, proving that generalized parton distributions (GPDs) are accessible to experiment at moderate Q(2). The helicity-independent cross section is also measured at Q(2)=2.3 GeV(2). We present the first model-independent measurement of linear combinations of GPDs and GPD integrals up to the twist-3 approximation.

20.
Phys Rev Lett ; 95(14): 142002, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16241646

ABSTRACT

We present the first measurement of the Q2 dependence of the neutron spin structure function g2(n) at five kinematic points covering 0.57 (GeV/c)2 < or = Q2 < or = 1.34 (GeV/c)2 at x approximately = 0.2. Though the naive quark-parton model predicts g2 = 0, nonzero values occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses, or orbital angular momentum. When scattering from a noninteracting quark, g2(n) can be predicted using next-to-leading order fits to world data for g1(n). Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g1(n) are consistent with next-to-leading order fits to world data.

SELECTION OF CITATIONS
SEARCH DETAIL