Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Annu Rev Immunol ; 40: 469-498, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35138947

ABSTRACT

Intracellular pathogens pose a significant threat to animals. In defense, innate immune sensors attempt to detect these pathogens using pattern recognition receptors that either directly detect microbial molecules or indirectly detect their pathogenic activity. These sensors trigger different forms of regulated cell death, including pyroptosis, apoptosis, and necroptosis, which eliminate the infected host cell niche while simultaneously promoting beneficial immune responses. These defenses force intracellular pathogens to evolve strategies to minimize or completely evade the sensors. In this review, we discuss recent advances in our understanding of the cytosolic pattern recognition receptors that drive cell death, including NLRP1, NLRP3, NLRP6, NLRP9, NLRC4, AIM2, IFI16, and ZBP1.


Subject(s)
Inflammasomes , Pyroptosis , Animals , Apoptosis , Cell Death , Humans , Inflammasomes/metabolism , Necroptosis
2.
Cell ; 156(4): 629-30, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24529369

ABSTRACT

The functional significance of protein diversification through translational regulation in mammals is largely unexplored. Brubaker et al. now describe the generation of two functionally distinct mammalian proteins, MAVS and miniMAVS, from a single bicistronic mRNA and suggest that noncanonical translation may impact multiple players in innate immune regulation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Gene Expression Regulation , Immunity, Innate , Protein Biosynthesis , Animals , Humans
3.
Nature ; 606(7916): 960-967, 2022 06.
Article in English | MEDLINE | ID: mdl-35705808

ABSTRACT

Among the caspases that cause regulated cell death, a unique function for caspase-7 has remained elusive. Caspase-3 performs apoptosis, whereas caspase-7 is typically considered an inefficient back-up. Caspase-1 activates gasdermin D pores to lyse the cell; however, caspase-1 also activates caspase-7 for unknown reasons1. Caspases can also trigger cell-type-specific death responses; for example, caspase-1 causes the extrusion of intestinal epithelial cell (IECs) in response to infection with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium)2,3. Here we show in both organoids and mice that caspase-7-deficient IECs do not complete extrusion. Mechanistically, caspase-7 counteracts gasdermin D pores and preserves cell integrity by cleaving and activating acid sphingomyelinase (ASM), which thereby generates copious amounts of ceramide to enable enhanced membrane repair. This provides time to complete the process of IEC extrusion. In parallel, we also show that caspase-7 and ASM cleavage are required to clear Chromobacterium violaceum and Listeria monocytogenes after perforin-pore-mediated attack by natural killer cells or cytotoxic T lymphocytes, which normally causes apoptosis in infected hepatocytes. Therefore, caspase-7 is not a conventional executioner but instead is a death facilitator that delays pore-driven lysis so that more-specialized processes, such as extrusion or apoptosis, can be completed before cell death. Cells must put their affairs in order before they die.


Subject(s)
Caspase 7 , Perforin , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Sphingomyelin Phosphodiesterase , Animals , Apoptosis , Caspase 7/metabolism , Chromobacterium/immunology , Epithelial Cells/cytology , Intestines/cytology , Killer Cells, Natural/immunology , Listeria monocytogenes/immunology , Mice , Organoids , Perforin/metabolism , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes, Cytotoxic/immunology
4.
Semin Immunol ; 69: 101805, 2023 09.
Article in English | MEDLINE | ID: mdl-37429234

ABSTRACT

Pathogenic microbes invade the human body and trigger a host immune response to defend against the infection. In response, host-adapted pathogens employ numerous virulence strategies to overcome host defense mechanisms. As a result, the interaction between the host and pathogen is a dynamic process that shapes the evolution of the host's immune response. Among the immune responses against intracellular bacteria, pyroptosis, a lytic form of cell death, is a crucial mechanism that eliminates replicative niches for intracellular pathogens and modulates the immune system by releasing danger signals. This review focuses on the role of pyroptosis in combating intracellular bacterial infection. We examine the cell type specific roles of pyroptosis in neutrophils and intestinal epithelial cells. We discuss the regulatory mechanisms of pyroptosis, including its modulation by autophagy and interferon-inducible GTPases. Furthermore, we highlight that while host-adapted pathogens can often subvert pyroptosis, environmental microbes are effectively eliminated by pyroptosis.


Subject(s)
Bacterial Infections , Pyroptosis , Humans , Cell Death , Neutrophils , Bacteria
5.
Nat Immunol ; 15(12): 1100-2, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25396345

ABSTRACT

Vesicular stomatitis virus, a single-stranded RNA virus, triggers activation of the serine-threonine kinases RIP1 and RIP3, which damages mitochondria by activating the GTPase DRP1. This results in excessive production of reactive oxygen species and subsequent activation of the NLRP3 inflammasome.


Subject(s)
Carrier Proteins/immunology , Inflammasomes/immunology , RNA Virus Infections/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Signal Transduction/immunology , Animals , Humans , NLR Family, Pyrin Domain-Containing 3 Protein
6.
Immunity ; 45(6): 1258-1269, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27939674

ABSTRACT

Programmed death and shedding of epithelial cells is a powerful defense mechanism to reduce bacterial burden during infection but this activity cannot be indiscriminate because of the critical barrier function of the epithelium. We report that during cystitis, shedding of infected bladder epithelial cells (BECs) was preceded by the recruitment of mast cells (MCs) directly underneath the superficial epithelium where they docked and extruded their granules. MCs were responding to interleukin-1ß (IL-1ß) secreted by BECs after inflammasome and caspase-1 signaling. Upon uptake of granule-associated chymase (mouse MC protease 4 [mMCPT4]), BECs underwent caspase-1-associated cytolysis and exfoliation. Thus, infected epithelial cells require a specific cue for cytolysis from recruited sentinel inflammatory cells before shedding.


Subject(s)
Chymases/immunology , Cytotoxins/immunology , Epithelial Cells/microbiology , Mast Cells/immunology , Urinary Tract Infections/immunology , Animals , Cell Degranulation/immunology , Cell Line , Cytoplasmic Granules/chemistry , Female , Fluorescent Antibody Technique , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Infect Immun ; 92(1): e0032923, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38084951

ABSTRACT

Engineering pathogens is a useful method for discovering new details of microbial pathogenesis and host defense. However, engineering can result in off-target effects. We previously engineered Salmonella enterica serovar Typhimurium to overexpress the secretion signal of the type 3 secretion system effector SspH1 fused with domains of other proteins as cargo. Such engineering had no virulence cost to the bacteria for the first 48 hours post infection in mice. Here, we show that after 48 hours, the engineered bacteria manifest an attenuation that correlates with the quantity of the SspH1 translocation signal expressed. In IFN-γ-deficient mice, this attenuation was weakened. Conversely, the attenuation was accelerated in the context of a pre-existing infection. We speculate that inflammatory signals change aspects of the target cell's physiology, which makes host cells less permissive to S. Typhimurium infection. This increased degree of difficulty requires the bacteria to utilize its T3SS at peak efficiency, which can be disrupted by engineered effectors.


Subject(s)
Salmonella typhimurium , Type III Secretion Systems , Animals , Mice , Virulence , Type III Secretion Systems/genetics , Virulence Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
Immunity ; 43(5): 987-97, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26572063

ABSTRACT

Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens.


Subject(s)
Bacterial Infections/immunology , Inflammasomes/immunology , Killer Cells, Natural/immunology , Pyroptosis/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Calcium-Binding Proteins/immunology , Caspase 1/immunology , Cell Death/immunology , Chromobacterium/immunology , Granulomatous Disease, Chronic/immunology , Interferon-gamma/immunology , Interleukin-18/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Liver/immunology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Spleen/immunology
9.
EMBO J ; 38(13): e102494, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31268605

ABSTRACT

Microbial pathogens can be detected by inflammasomes that induce inflammation and programmed cell death. Inflammasomes are sensors that survey cells for signs of compromise. One of these sensors, NLRP1, detects anthrax lethal toxin; however, the mechanism of NLRP1 activation has remained unknown. Here, Xu et al discover NLRP1 cleavage by lethal toxin induces the N-end rule, which targets NLRP1 for degradation. Surprisingly, the active inflammasome fragment escapes the proteasome and becomes an activate inflammasome itself.


Subject(s)
Anthrax , Inflammasomes , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Humans , Ligases , NLR Proteins , Ubiquitin
12.
Nat Immunol ; 11(12): 1136-42, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21057511

ABSTRACT

Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of interleukin 1ß (IL-1ß) and IL-18. Although infection with wild-type Salmonella typhimurium is lethal to mice, we show here that a strain that persistently expresses flagellin was cleared by the cytosolic flagellin-detection pathway through the activation of caspase-1 by the NLRC4 inflammasome; however, this clearance was independent of IL-1ß and IL-18. Instead, caspase-1-induced pyroptotic cell death released bacteria from macrophages and exposed the bacteria to uptake and killing by reactive oxygen species in neutrophils. Similarly, activation of caspase-1 cleared unmanipulated Legionella pneumophila and Burkholderia thailandensis by cytokine-independent mechanisms. This demonstrates that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1ß and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.


Subject(s)
Apoptosis/immunology , Caspase 1/immunology , Immunity, Innate/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , Cell Separation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunohistochemistry , Inflammasomes/immunology , Inflammasomes/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL
13.
Immunity ; 39(3): 432-41, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-24054327

ABSTRACT

A major function of a subfamily of NLR (nucleotide-binding domain, leucine-rich repeat containing, or NOD-like receptor) proteins is in inflammasome activation, which has been implicated in a multitude of disease models and human diseases. This work will highlight key progress in understanding the mechanisms that activate the best-studied NLRs (NLRP3, NLRC4, NAIP, and NLRP1) and in uncovering inflammasome NLRs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/metabolism , Carrier Proteins/metabolism , Inflammasomes/immunology , Neuronal Apoptosis-Inhibitory Protein/metabolism , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis Regulatory Proteins/immunology , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/immunology , Carrier Proteins/immunology , Caspase 1/metabolism , Enzyme Activation , Humans , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , Neuronal Apoptosis-Inhibitory Protein/immunology , Receptors, Cytoplasmic and Nuclear/immunology , Signal Transduction
14.
Immunity ; 39(6): 1108-20, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24332031

ABSTRACT

The virulence of Salmonella is linked to its invasive capacity and suppression of adaptive immunity. This does not explain, however, the rapid dissemination of the pathogen after it breaches the gut. In our study, S. Typhimurium suppressed degranulation of local mast cells (MCs), resulting in limited neutrophil recruitment and restricting outflow of vascular contents into infection sites, thus facilitating bacterial spread. MC suppression was mediated by secreted effector protein (SptP), which shares structural homology with Yersinia YopH. SptP functioned by dephosphorylating the vesicle fusion protein N-ethylmalemide-sensitive factor and by blocking phosphorylation of Syk. Without SptP, orally challenged S. Typhimurium failed to suppress MC degranulation and exhibited limited colonization of the mesenteric lymph nodes. Administration of SptP to sites of E. coli infection markedly enhanced its virulence. Thus, SptP-mediated inactivation of local MCs is a powerful mechanism utilized by S. Typhimurium to impede early innate immunity.


Subject(s)
Bacterial Proteins/metabolism , Immunity, Innate/immunology , Mast Cells/microbiology , Protein Tyrosine Phosphatases/metabolism , Salmonella Infections/immunology , Salmonella typhimurium/enzymology , Animals , Bacterial Proteins/genetics , Cell Degranulation , Humans , Mast Cells/immunology , Mice , Mice, Inbred C57BL , Mutation , Neutrophils/immunology , Phosphorylation , Protein Tyrosine Phosphatases/genetics , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Yersinia pestis/enzymology
17.
J Immunol ; 199(3): 1051-1059, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28637899

ABSTRACT

The Western diet is characterized by high protein, sugar, fat, and low fiber intake, and is widely believed to contribute to the incidence and pathogenesis of inflammatory bowel disease (IBD). However, high sodium chloride salt content, a defining feature of processed foods, has not been considered as a possible environmental factor that might drive IBD. We set out to bridge this gap. We examined murine models of colitis on either a high salt diet (HSD) or a low salt diet. We demonstrate that an HSD exacerbates inflammatory pathology in the IL-10-deficient murine model of colitis relative to mice fed a low salt diet. This was correlated with enhanced expression of numerous proinflammatory cytokines. Surprisingly, sodium accumulated in the colons of mice on an HSD, suggesting a direct effect of salt within the colon. Similar to the IL-10-deficient model, an HSD also enhanced cytokine expression during infection by Salmonella typhimurium This occurred in the first 3 d of infection, suggesting that an HSD potentiates an innate immune response. Indeed, in cultured dendritic cells we found that high salt media potentiates cytokine expression downstream of TLR4 activation via p38 MAPK and SGK1. A third common colitis model, administration of dextran sodium sulfate, was hopelessly confounded by the high sodium content of the dextran sodium sulfate. Our results raise the possibility that high dietary salt is an environmental factor that drives increased inflammation in IBD.


Subject(s)
Colitis/etiology , Colitis/immunology , Colon/immunology , Disease Progression , Inflammatory Bowel Diseases/etiology , Sodium Chloride, Dietary/adverse effects , Animals , Colitis/chemically induced , Colitis/physiopathology , Colon/chemistry , Colon/pathology , Culture Media/chemistry , Cytokines/biosynthesis , Cytokines/immunology , Dendritic Cells/drug effects , Dextran Sulfate/administration & dosage , Dextran Sulfate/adverse effects , Disease Models, Animal , Immediate-Early Proteins/immunology , Immunity, Innate , Inflammation/etiology , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/immunology , Intestinal Mucosa/immunology , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Sodium Chloride, Dietary/administration & dosage , Sodium Chloride, Dietary/immunology , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , p38 Mitogen-Activated Protein Kinases/immunology
18.
J Immunol ; 199(10): 3634-3643, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29038248

ABSTRACT

Critically ill patients typically present with hyperglycemia. Treatment with conventional insulin therapy (targeting 144-180 mg/dl) improves patient survival; however, intensive insulin therapy (IIT) targeting normal blood glucose levels (81-108 mg/dl) increases the incidence of moderate and severe hypoglycemia, and increases mortality. Septic patients are especially prone to IIT-induced hypoglycemia, but the mechanism remains unknown. Here, we show that codelivery of insulin with otherwise sublethal doses of LPS induced hypoglycemic shock in mice within 1-2 h. LPS impaired clearance of insulin, which amplified insulin receptor signaling. These effects were mediated by caspase-11, TLR4, and complement, each of which trigger eicosanoid production that potentiates insulin signaling. Finally, in an animal model of sepsis, we observed that Salmonella typhimurium-infected mice exhibited simultaneous impaired insulin clearance coexisting with insulin resistance. Our results raise the possibility that septic patients have impaired insulin clearance, which could increase their susceptibility to hypoglycemia during IIT, contraindicating its use.


Subject(s)
Congenital Hyperinsulinism/drug therapy , Insulin/therapeutic use , Salmonella Infections/drug therapy , Salmonella typhimurium/immunology , Sepsis/drug therapy , Animals , Caspases/genetics , Caspases/metabolism , Caspases, Initiator , Cells, Cultured , Complement System Proteins/metabolism , Congenital Hyperinsulinism/immunology , Female , Humans , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Salmonella Infections/immunology , Sepsis/immunology , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
19.
Immunol Rev ; 265(1): 130-42, 2015 May.
Article in English | MEDLINE | ID: mdl-25879289

ABSTRACT

Inflammatory caspases play a central role in innate immunity by responding to cytosolic signals and initiating a twofold response. First, caspase-1 induces the activation and secretion of the two prominent pro-inflammatory cytokines, interleukin-1ß (IL-1ß) and IL-18. Second, either caspase-1 or caspase-11 can trigger a form of lytic, programmed cell death called pyroptosis. Pyroptosis operates to remove the replication niche of intracellular pathogens, making them susceptible to phagocytosis and killing by a secondary phagocyte. However, aberrant, systemic activation of pyroptosis in vivo may contribute to sepsis. Emphasizing the efficiency of inflammasome detection of microbial infections, many pathogens have evolved to avoid or subvert pyroptosis. This review focuses on molecular and morphological characteristics of pyroptosis and the individual inflammasomes and their contribution to defense against infection in mice and humans.


Subject(s)
Infections/immunology , Inflammasomes/metabolism , Animals , Caspase 1/metabolism , Caspases/metabolism , Caspases, Initiator/metabolism , DNA Replication , Humans , Immune Evasion , Immunity, Innate , Inflammasomes/immunology , Interleukin-1/metabolism , Interleukin-18/metabolism , Intracellular Space , Mice , Pyroptosis
20.
PLoS Pathog ; 12(8): e1005803, 2016 08.
Article in English | MEDLINE | ID: mdl-27482714

ABSTRACT

Rickettsial agents are sensed by pattern recognition receptors but lack pathogen-associated molecular patterns commonly observed in facultative intracellular bacteria. Due to these molecular features, the order Rickettsiales can be used to uncover broader principles of bacterial immunity. Here, we used the bacterium Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, to reveal a novel microbial surveillance system. Mechanistically, we discovered that upon A. phagocytophilum infection, cytosolic phospholipase A2 cleaves arachidonic acid from phospholipids, which is converted to the eicosanoid prostaglandin E2 (PGE2) via cyclooxygenase 2 (COX2) and the membrane associated prostaglandin E synthase-1 (mPGES-1). PGE2-EP3 receptor signaling leads to activation of the NLRC4 inflammasome and secretion of interleukin (IL)-1ß and IL-18. Importantly, the receptor-interacting serine/threonine-protein kinase 2 (RIPK2) was identified as a major regulator of the immune response against A. phagocytophilum. Accordingly, mice lacking COX2 were more susceptible to A. phagocytophilum, had a defect in IL-18 secretion and exhibited splenomegaly and damage to the splenic architecture. Remarkably, Salmonella-induced NLRC4 inflammasome activation was not affected by either chemical inhibition or genetic ablation of genes associated with PGE2 biosynthesis and signaling. This divergence in immune circuitry was due to reduced levels of the PGE2-EP3 receptor during Salmonella infection when compared to A. phagocytophilum. Collectively, we reveal the existence of a functionally distinct NLRC4 inflammasome illustrated by the rickettsial agent A. phagocytophilum.


Subject(s)
Anaplasma phagocytophilum/immunology , Apoptosis Regulatory Proteins/immunology , Calcium-Binding Proteins/immunology , Dinoprostone/immunology , Ehrlichiosis/immunology , Inflammasomes/immunology , Receptors, Prostaglandin E, EP3 Subtype/immunology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Immunoblotting , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL