Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Gen Virol ; 101(1): 33-43, 2020 01.
Article in English | MEDLINE | ID: mdl-31794379

ABSTRACT

Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that is caused by peste des petits ruminants virus (PPRV). To date, the molecular mechanism of PPRV infection is still unclear. It is well known that host proteins might be involved in the pathogenesis process for many viruses. In this study, we first proved that nucleolin (NCL), a highly conserved host factor, interacts with the core domain of PPRV N protein through its C terminus and co-locates with the N protein in the nucleus of cells. To investigate the role of NCL in PPRV infection, the expression level of NCL was inhibited with small interfering RNAs of NCL, and the results showed that PPRV growth was improved. However, the proliferation of PPRV was inhibited when the expression level of NCL was improved. Further analysis indicated that the inhibitory effect of NCL on the PPRV was caused by stimulating the interferon (IFN) pathways in host cells. In summary, our results will help us to understand the mechanism of PPRV infection.


Subject(s)
Peste-des-Petits-Ruminants/metabolism , Peste-des-petits-ruminants virus/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Ruminants/metabolism , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Interferons/metabolism , Nucleocapsid Proteins/metabolism , Ruminants/virology , Vero Cells , Nucleolin
2.
PLoS Pathog ; 14(10): e1007383, 2018 10.
Article in English | MEDLINE | ID: mdl-30339712

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV) is an important member of the Caliciviridae family and a highly lethal pathogen in rabbits. Although the cell receptor of RHDV has been identified, the mechanism underlying RHDV internalization remains unknown. In this study, the entry and post-internalization of RHDV into host cells were investigated using several biochemical inhibitors and RNA interference. Our data demonstrate that rabbit nucleolin (NCL) plays a key role in RHDV internalization. Further study revealed that NCL specifically interacts with the RHDV capsid protein (VP60) through its N-terminal residues (aa 285-318), and the exact position of the VP60 protein for the interaction with NCL is located in a highly conserved region (472Asp-Val-Asn474; DVN motif). Following competitive blocking of the interaction between NCL and VP60 with an artificial DVN peptide (RRTGDVNAAAGSTNGTQ), the internalization efficiency of the virus was markedly reduced. Moreover, NCL also interacts with the C-terminal residues of clathrin light chain A, which is an important component in clathrin-dependent endocytosis. In addition, the results of animal experiments also demonstrated that artificial DVN peptides protected most rabbits from RHDV infection. These findings demonstrate that NCL is involved in RHDV internalization through clathrin-dependent endocytosis.


Subject(s)
Caliciviridae Infections/virology , Clathrin/metabolism , Endocytosis , Hemorrhagic Disease Virus, Rabbit/physiology , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Viral Structural Proteins/metabolism , Virus Assembly , Animals , Male , Mice , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Conformation , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Rabbits , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , Virus Internalization , Nucleolin
3.
BMC Vet Res ; 15(1): 423, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31775738

ABSTRACT

BACKGROUND: Rabbit Hemorrhagic Disease Virus (RHDV) belongs to the Caliciviridae family, is a highly lethal pathogen to rabbits. Increasing numbers of studies have demonstrated the existence of antigenic variation in RHDV, leading to the emergence of a new RHDV isolate (RHDVb). However, the underlying factors determining the emergence of the new RHDV and its unpredictable epidemiology remain unclear. To investigate these issues, we selected more than 184 partial and/or complete genome sequences of RHDV from GenBank and analyzed their phylogenetic relationships, divergence, and predicted protein modification sites. RESULTS: Phylogenetic analysis showed that classic RHDV isolates, RHDVa, and RHDVb formed different clades. It's interesting to note that RHDVa being more closely related to classic RHDV than RHDVb, while RHDVb had a closer genetic relationship to Rabbit Calicivirus (RCV) than to classic RHDV isolates. Moreover, divergence analysis suggested that the accumulation of amino acid (aa) changes might be a consequence of adaptive diversification of capsid protein (VP60) during the division between classical RHDV, RHDVa, RHDVb, and RCV. Notably, the prediction of N-glycosylation sites suggested that RHDVb subtypes had two unique N-glycosylation sites (aa 301, 362) but lacked three other N-glycosylation sites (aa 45, 308, 474) displayed in classic RHDV and RHDVa VP60 implying this divergence of N-glycosylation sites in RHDV might affect viral virulence. Analysis of phosphorylation sites also indicated that some phosphorylation sites in RHDVa and RHDVb differed from those in classic RHDV, potentially related to antigenic variation in RHDV. CONCLUSION: The genetic relationship between RHDVb and RCV was closer than classic RHDV isolates. Moreover, compared to RHDV and RHDVa, RHDVb had two unique N-glycosylation sites but lacked three sites, which might affect the virulence of RHDV. These results may provide new clues for further investigations of the origin of new types of RHDV and the mechanisms of genetic variation in RHDV.


Subject(s)
Capsid Proteins/genetics , Genome, Viral , Hemorrhagic Disease Virus, Rabbit/genetics , Computational Biology , Genetic Variation , Glycosylation , Hemorrhagic Disease Virus, Rabbit/classification , Phylogeny , Sequence Analysis, Protein
4.
J Biol Chem ; 292(21): 8605-8615, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28381555

ABSTRACT

The fact that rabbit hemorrhagic disease virus (RHDV), an important member of the Caliciviridae family, cannot be propagated in vitro has greatly impeded the progress of investigations into the mechanisms of pathogenesis, translation, and replication of this and related viruses. In this study, we have successfully bypassed this obstacle by constructing a mutant RHDV (mRHDV) by using a reverse genetics technique. By changing two amino acids (S305R,N307D), we produced a specific receptor-recognition motif (Arg-Gly-Asp; called RGD) on the surface of the RHDV capsid protein. mRHDV was recognized by the intrinsic membrane receptor (integrin) of the RK-13 cells, which then gained entry and proliferated as well as imparted apparent cytopathic effects. After 20 passages, the titers of RHDV reached 1 × 104.3 50% tissue culture infectious dose (TCID50)/ml at 72 h. Furthermore, mRHDV-infected rabbits showed typical rabbit plague symptoms and died within 48-72 h. After immunization with inactivated mRHDV, the rabbits survived wild-type RHDV infection, indicating that mRHDV could be a candidate virus strain for producing a vaccine against RHDV infection. In summary, this study offers a novel strategy for overcoming the challenges of proliferating RHDV in vitro Because virus uptake via specific membrane receptors, several of which specifically bind to the RGD peptide motif, is a common feature of host cells, we believe that this the strategy could also be applied to other RNA viruses that currently lack suitable cell lines for propagation such as hepatitis E virus and norovirus.


Subject(s)
Capsid Proteins , Hemorrhagic Disease Virus, Rabbit , Receptors, Immunologic , Receptors, Peptide , Virus Cultivation/methods , Amino Acid Motifs , Animals , Caliciviridae Infections/immunology , Caliciviridae Infections/prevention & control , Caliciviridae Infections/veterinary , Capsid Proteins/biosynthesis , Capsid Proteins/genetics , Capsid Proteins/immunology , Chlorocebus aethiops , Cricetinae , Dogs , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/growth & development , Hemorrhagic Disease Virus, Rabbit/immunology , Humans , Madin Darby Canine Kidney Cells , Rabbits , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Receptors, Peptide/genetics , Receptors, Peptide/immunology , Vero Cells , Viral Vaccines/genetics , Viral Vaccines/immunology , Viral Vaccines/metabolism
5.
Virol J ; 15(1): 140, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30217161

ABSTRACT

BACKGROUD: Duck Tembusu virus (DTMUV), a pathogenic flavivirus, emerged in China since 2010 and causing huge economic loss in the Chinese poultry industry. Although several vaccines have been reported to control DTMUV disease, few effective vaccines are available and new outbreaks were continuously reported. Thus, it is urgently to develop a new effective vaccine for prevention of this disease. METHODS: In this study, a suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon and DTMUV E glycoprotein gene was constructed and the efficacy of this new vaccine was assessed according to humoral and cell-mediated immune responses as well as protection against the DTMUV challenge in ducklings. RESULTS: Our results showed that the recombinant SFV replicon highly expressed E glycoprotein in DEF cells. After intramuscular injection of this new DNA vaccine in ducklings, robust humoral and cellular immune responses were observed in all immunized ducklings. Moreover, all ducklings were protected against challenge with the virulent DTMUV AH-F10 strain. CONCLUSIONS: In conclusion, we demonstrate that this suicidal DNA vaccine is a promising candidate facilitating the prevention of DTMUV infection.


Subject(s)
Flavivirus Infections/veterinary , Flavivirus/immunology , Poultry Diseases/prevention & control , Vaccines, DNA/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Animals , China , Ducks , Flavivirus/genetics , Flavivirus Infections/prevention & control , Genetic Vectors , Glycoproteins/genetics , Glycoproteins/immunology , Immunity, Cellular , Immunity, Humoral , Injections, Intramuscular , Semliki forest virus/genetics , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Viral Envelope Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
6.
Virus Genes ; 51(3): 367-74, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26578153

ABSTRACT

To date, the genetic replication and translation mechanisms as well as the pathogenesis of duck hepatitis A virus type 1 (DHAV-1) have not been adequately characterized due to the lack of a reliable and efficient cell culture system. Although the full-length infections clone system is the best platform to manipulate the virus, it is relatively difficult to assemble this system due to the lack of a suitable cell line. It has been proven that the minigenome system an efficient reverse genetics system for the study of RNA viruses. In some cases, it can be used to displace the infectious clone of RNA viruses. Here, we generated a minigenome for DHAV-1 with two luciferase reporter genes, firefly luciferase (Fluc) and Renilla luciferase (Rluc). The Rluc gene was used as a reference gene for the normalization of the Fluc gene expression in transfected cells, which provided a platform for studying the regulatory mechanisms of DHAV-1. Furthermore, to investigate the role of DHAV-3'UTR in the regulation of viral protein translation, deletions in the 3'UTR were introduced into the DHAV-1 minigenome. Luciferase activity, an indicator of virus translation, was then determined. These results showed that a minigenome system for DHAV-1 was successfully constructed for the first time and that the complete or partial deletion of the DHAV-3'UTR did not affect the expression level of the reporter gene, indicating that DHAV-1 translation may not be modulated by the viral genomic 3'UTR sequence.


Subject(s)
3' Untranslated Regions , Ducks/virology , Genome, Viral , Hepatitis Virus, Duck/genetics , Animals , Blotting, Western , Cell Line , Cricetinae , Fluorescent Antibody Technique, Indirect , Genes, Reporter , Plasmids , Protein Biosynthesis , RNA, Viral/genetics , Sequence Deletion , Transfection
7.
Virol Sin ; 37(1): 48-59, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35234629

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV) is a member of the Caliciviridae family and cannot be propagated in vitro, which has impeded the progress of investigating its replication mechanism. Construction of an RHDV replicon system has recently provided a platform for exploring RHDV replication in host cells. Here, aided by this replicon system and using two-step affinity purification, we purified the RHDV replicase and identified its associated host factors. We identified rabbit nucleolin (NCL) as a physical link, which mediating the interaction between other RNA-dependent RNA polymerase (RdRp)-related host proteins and the viral replicase RdRp. We found that the overexpression or knockdown of NCL significantly increased or severely impaired RHDV replication in RK-13 â€‹cells, respectively. NCL was identified to directly interact with RHDV RdRp, p16, and p23. Furthermore, NCL knockdown severely impaired the binding of RdRp to RdRp-related host factors. Collectively, these results indicate that the host protein NCL is essential for RHDV replication and acts as a physical link between viral replicase and host proteins.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Hemorrhagic Disease Virus, Rabbit/chemistry , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/metabolism , Humans , Phosphoproteins , RNA-Binding Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Virus Replication , Nucleolin
8.
Vet Microbiol ; 259: 109143, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34098254

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV) causes a highly contagious disease in rabbits that is associated with high mortality. Because of the lack of a suitable cell culture system for RHDV, its pathogenic mechanism and replication remain unclear. This study found that the expression level of host protein rabbit hemoglobin subunit beta (HBB) was significantly downregulated in RHDV-infected cells. To investigate the role of HBB in RHDV replication, small interfering RNAs for HBB and HBB eukaryotic expression plasmids were used to change the expression level of HBB in RK-13 cells and the results showed that the RHDV replication level was negatively correlated with the expression level of HBB. It was also verified that HBB inhibited RHDV replication using constructed HBB stable overexpression cell lines and HBB knockout cell lines. The interaction of HBB with viral capsid protein VP60, replicase RdRp, and VPg protein was confirmed, as was the activation of the expression of interferon γ by HBB. The results of this study indicated that HBB may be an important host protein in host resistance to RHDV infection.


Subject(s)
Caliciviridae Infections/veterinary , Capsid Proteins/metabolism , Hemoglobin Subunits/metabolism , Hemorrhagic Disease Virus, Rabbit/chemistry , Hemorrhagic Disease Virus, Rabbit/metabolism , Viral Proteins/metabolism , Viral Structural Proteins/metabolism , Virus Replication , Animals , Capsid Proteins/genetics , Cell Line , Female , Hemoglobin Subunits/genetics , Hemoglobin Subunits/immunology , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/physiology , Interferon-gamma/immunology , Rabbits , Viral Proteins/genetics
9.
Vet Microbiol ; 260: 109163, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311269

ABSTRACT

Small ruminant morbillivirus (SRMV) is a highly contagious and economically important viral disease of small domestic and wild ruminants. Difficulty with its stable proliferation in ovis aries-derived cells has led to a relative lag in the study of its natural immunity and pathogenesis. Here we report the antiviral properties of ZAP against SRMV, a single-stranded negative-stranded RNA virus of the genus Morbillivirus. ZAP expression was significantly induced in sheep endometrial epithelial cells following SRMV infection. ZAP inhibited SRMV replication in cells after infection, while its overexpression in Vero-SLAM cells significantly increased their resistance to SRMV replication. The ZAP protein co-localized with SRMV RNA in the cytoplasm and ZAP-responsive elements were mapped to the 5' untranslated region of SRMV nucleocapsid, phosphoprotein, matrix, and fusion. In summary, ZAP confers resistance to SRMV infection by directly targeting viral RNA and inhibiting viral replication. Our findings further extend the ranges of viral targets of ZAP and help elucidate the mechanism of SRMV replication.


Subject(s)
Morbillivirus Infections/veterinary , Morbillivirus/physiology , RNA-Binding Proteins/metabolism , Animals , Chlorocebus aethiops , Endometrium/virology , Epithelial Cells/virology , Female , HEK293 Cells , Humans , Morbillivirus Infections/virology , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Sheep , Vero Cells , Virus Replication
10.
Viruses ; 13(3)2021 03 05.
Article in English | MEDLINE | ID: mdl-33807534

ABSTRACT

The mitochondrial antiviral-signaling protein (MAVS, also known as VISA, IPS-1, or CARDIF) plays an essential role in the type I interferon (IFN) response and in retinoic acid-inducible gene I (RIG-I) mediated antiviral innate immunity in mammals. In this study, the caprine MAVS gene (caMAVS, 1566 bp) was identified and cloned. The caMAVS shares the highest amino acid similarity (98.1%) with the predicted sheep MAVS. Confocal microscopy analysis of partial deletion mutants of caMAVS revealed that the transmembrane and the so-called Non-Characterized domains are indispensable for intracellular localization to mitochondria. Overexpression of caMAVS in caprine endometrial epithelial cells up-regulated the mRNA levels of caprine interferon-stimulated genes. We concluded that caprine MAVS mediates the activation of the type I IFN pathway. We further demonstrated that both the CARD-like domain and the transmembrane domain of caMAVS were essential for the activation of the IFN-ß promotor. The interaction between caMAVS and caprine RIG-I and the vital role of the CARD and NC domain in this interaction was demonstrated by co-immunoprecipitation. Upon infection with the Peste des Petits Ruminants Virus (PPRV, genus Morbillivirus), the level of MAVS was greatly reduced. This reduction was prevented by the addition of the proteasome inhibitor MG132. Moreover, we found that viral protein V could interact and colocalize with MAVS. Together, we identified caMAVS as a RIG-I interactive protein involved in the activation of type I IFN pathways in caprine cells and as a target for PPRV immune evasion.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Interferon Inducers/immunology , Peste-des-Petits-Ruminants/immunology , Peste-des-petits-ruminants virus/immunology , Animals , Chlorocebus aethiops , Epithelial Cells , Goats , HEK293 Cells , Humans , Interferon Type I/immunology , Vero Cells
11.
Vet Microbiol ; 249: 108858, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32980631

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV), a member of Caliciviridae family, causes a highly contagious disease in rabbits. The RHDV replication mechanism is poorly understood due to the lack of a suitable culture system in vitro. This study identified RHDV 5' and 3' extremities (Ex) RNA binding proteins from the rabbit kidney cell line RK-13 based on a pull-down assay by applying a tRNA scaffold streptavidin aptamer. Using mass spectrometry (MS), several host proteins were discovered which interact with RHDV 5' and 3' Ex RNA. The ribosomal protein S5 (RPS5) was shown to interact with RHDV 3' Ex RNA directly by RNA-pulldown and confocal microscopy. To further investigate the role of RPS5 in RHDV replication, small interfering RNAs for RPS5 and RPS5 eukaryotic expression plasmids were used to change the expression level of RPS5 in RK-13 cells and the results showed that the RHDV replication and translation levels were positively correlated with the expression level of RPS5. It was also verified that RPS5 promoted RHDV replication by constructing RPS5 stable overexpression cell lines and RPS5 knockdown cell lines. In summary, it has been identified that RPS5 interacted with the RHDV 3' Ex RNA region and played a role in virus replication. These results will help to understand the mechanism of RHDV replication.


Subject(s)
Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/metabolism , Ribosomal Proteins/metabolism , Virus Replication/genetics , Caliciviridae Infections/virology , Gene Expression Regulation, Viral , Hemorrhagic Disease Virus, Rabbit/genetics
12.
Vet Microbiol ; 240: 108529, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31902498

ABSTRACT

Rabbit hemorrhagic disease (RHD) is an acute, inflammatory, septic, and devastating infectious disease caused by Rabbit hemorrhagic disease virus (RHDV), which poses a serious threat to the rabbit industry. RHDV2 (GI.2/RHDVb), a recently reported new variant could cause RHD in wild populations, but also RHDV-vaccinated rabbits. For now, both RHDV and RHDV2 are the main causes of RHD. To develop a new subunit vaccine that could protect rabbits against both classic RHDV and RHDV2 infections, we constructed a recombinant baculovirus (Bac-classic RHDV VP60-RHDV2 VP60) containing the VP60 genes of classic RHDV and RHDV2. Both VP60 genes were well expressed simultaneously in Spodoptera frugiperda cells (Sf9) after infection with the recombinant baculovirus. Transmission electron microscopy showed that the recombinant VP60 self-assembled into virus-like particles (VLPs). The antigenicity and immunogenicity of the bivalent VLPs vaccine were examined with animal experiments. Our results demonstrated that both the humoral and cellular immune responses were efficiently induced in rabbits by a subunit vaccine based on the recombinant baculovirus. In addition, all rabbits immunized with the bivalent VLPs vaccine survived after challenged with classic RHDV, and showed no clinical signs of RHD, whereas all the rabbits in the negative control group died from classic RHDV infection and showed typical clinical signs of RHD. In summary, our results indicated that the recombinant baculovirus carrying two VP60 genes is a candidate construct from which to develop a bivalent VLPs vaccine against both classic RHDV and RHDV2 infections.


Subject(s)
Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/immunology , Vaccines, Virus-Like Particle/immunology , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Baculoviridae , Caliciviridae Infections/prevention & control , Cytokines/immunology , Female , Hemorrhagic Disease Virus, Rabbit/genetics , Immunity, Cellular , Immunity, Humoral , Male , Rabbits , Sf9 Cells , Specific Pathogen-Free Organisms , Spodoptera , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Vaccines/genetics
13.
Viruses ; 11(6)2019 06 14.
Article in English | MEDLINE | ID: mdl-31207978

ABSTRACT

Rabbit haemorrhagic disease virus (RHDV) type 2 (GI.2/RHDV2/b) is an emerging pathogen in wild rabbits and in domestic rabbits vaccinated against RHDV (GI.1). Here we report the genome sequence of a contemporary RHDV2 isolate from the Netherlands and investigate the immunogenicity of virus-like particles (VLPs) produced in insect cells. RHDV2 RNA was isolated from the liver of a naturally infected wild rabbit and the complete viral genome sequence was assembled from sequenced RT-PCR products. Phylogenetic analysis based on the VP60 capsid gene demonstrated that the RHDV2 NL2016 isolate clustered with other contemporary RHDV2 strains. The VP60 gene was cloned in a baculovirus expression vector to produce VLPs in Sf9 insect cells. Density-gradient purified RHDV2 VLPs were visualized by transmission electron microscopy as spherical particles of around 30 nm in diameter with a morphology resembling authentic RHDV. Immunization of rabbits with RHDV2 VLPs resulted in high production of serum antibodies against VP60, and the production of cytokines (IFN-γ and IL-4) was significantly elevated in the immunized rabbits compared to the control group. The results demonstrate that the recombinant RHDV2 VLPs are highly immunogenic and may find applications in serological detection assays and might be further developed as a vaccine candidate to protect domestic rabbits against RHDV2 infection.


Subject(s)
Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/immunology , Vaccines, Virus-Like Particle/immunology , Virosomes/immunology , Animals , Antibodies, Viral/blood , Antibody Formation , Baculoviridae , Caliciviridae Infections/immunology , Caliciviridae Infections/prevention & control , Cluster Analysis , Cytokines/analysis , Genetic Vectors , Hemorrhagic Disease Virus, Rabbit/classification , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/isolation & purification , Immunity, Cellular , Netherlands , Phylogeny , Rabbits , Sequence Analysis, DNA , Sequence Homology , Sf9 Cells , Spodoptera , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Virosomes/genetics
14.
Infect Genet Evol ; 65: 425-429, 2018 11.
Article in English | MEDLINE | ID: mdl-30176370

ABSTRACT

In this study, a virulent systemic (VS) feline calicivirus (FCV) strain, SH, was isolated from a household cat with severe systemic clinical signs, and its full-length genome was determined and analyzed. Through immunofluorescence assays (IFA) and western blotting assays, we found that FCV SH strain, like other isolates, can stably proliferate in Crandell feline kidney (CRFK) cells. Moreover, the typical morphology of FCV particles, with a diameter of about 35 nm, was observed using electron microscopy. The full-length genome of FCV strain SH was sequenced and determined to be 7704 nucleotides (nt) in length with a 5'-terminal untranslated region (UTR) of 19 nt and a 3'-terminal UTR of 67 nt. Three open reading frames (ORF1, ORF2, and ORF 3) were found within the genome, coding for a polypeptide, a capsid precursor (VP1) and a minor structural protein (VP2), respectively. Amino acid sequence comparison revealed diversity (from 82.2% to 88.5% homology) between the VP1 protein sequences of the SH/14 isolate and those of 33 reference isolates from different regions. Phylogenetic analyses using alignments of VP1 protein sequences showed that the SH/14 isolate shares the highest sequence homology with the reported VS-FCV George strain (88.5%), and is located in the same clade as other reported VS-FCV isolates, indicating that the FCV SH/14 strain is a VS-FCV isolate. However, the SH/14 strain does not belong to the same lineage as most other Chinese FCV isolates, suggesting that, in China, a very large geographical entity, the virulent systemic FCV might has emerged.


Subject(s)
Caliciviridae Infections/veterinary , Calicivirus, Feline/pathogenicity , Cat Diseases/virology , Animals , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Calicivirus, Feline/genetics , Cats , China/epidemiology , Phylogeny , RNA, Viral/genetics , Virulence
17.
J Virol Methods ; 237: 86-91, 2016 11.
Article in English | MEDLINE | ID: mdl-27609534

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV) is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, which limits the study of its pathogenesis. To bypass this obstacle, we established a cell line, RK13-VPg, stably expressing the VPg gene with a lentivirus packaging system in this study. In addition, the recently constructed RHDV replicon in our laboratory provided an appropriate model for studying the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon and RK13-VPg cell line, we further demonstrated that the presence of VPg protein is essential for efficient translation of an RHDV replicon. Therefore, the RK13-VPg cell line is a powerful tool for studying the replication and translation mechanisms of RHDV.


Subject(s)
Cell Culture Techniques/methods , Hemorrhagic Disease Virus, Rabbit/physiology , Viral Structural Proteins/genetics , Animals , Cell Line , Hemorrhagic Disease Virus, Rabbit/chemistry , Hemorrhagic Disease Virus, Rabbit/genetics , Rabbits , Replicon/genetics , Virus Replication
18.
PLoS One ; 10(11): e0143467, 2015.
Article in English | MEDLINE | ID: mdl-26599265

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg) is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E) in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.


Subject(s)
Genome, Viral , Hemorrhagic Disease Virus, Rabbit/genetics , Protein Biosynthesis , Viral Proteins/physiology , Animals , DNA, Complementary/metabolism , Eukaryotic Initiation Factor-4E/genetics , Gene Silencing , Genetic Complementation Test , HEK293 Cells , Humans , Microscopy, Fluorescence , Protein Binding , Rabbits , Replicon , Two-Hybrid System Techniques , Viral Proteins/genetics , Virion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL