Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Cell ; 177(5): 1172-1186.e14, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31031009

ABSTRACT

Our bodies are equipped with powerful immune surveillance to clear cancerous cells as they emerge. How tumor-initiating stem cells (tSCs) that form and propagate cancers equip themselves to overcome this barrier remains poorly understood. To tackle this problem, we designed a skin cancer model for squamous cell carcinoma (SCC) that can be effectively challenged by adoptive cytotoxic T cell transfer (ACT)-based immunotherapy. Using single-cell RNA sequencing (RNA-seq) and lineage tracing, we found that transforming growth factor ß (TGF-ß)-responding tSCs are superior at resisting ACT and form the root of tumor relapse. Probing mechanism, we discovered that during malignancy, tSCs selectively acquire CD80, a surface ligand previously identified on immune cells. Moreover, upon engaging cytotoxic T lymphocyte antigen-4 (CTLA4), CD80-expressing tSCs directly dampen cytotoxic T cell activity. Conversely, upon CTLA4- or TGF-ß-blocking immunotherapies or Cd80 ablation, tSCs become vulnerable, diminishing tumor relapse after ACT treatment. Our findings place tSCs at the crux of how immune checkpoint pathways are activated.


Subject(s)
Adoptive Transfer , Carcinoma, Squamous Cell/immunology , Immunity, Cellular , Immunologic Surveillance , Neoplastic Stem Cells/immunology , Skin Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Cell Line, Tumor , Humans , Mice , Mice, Transgenic , Neoplasm Proteins/immunology , Neoplastic Stem Cells/pathology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , T-Lymphocytes/pathology
2.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677291

ABSTRACT

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Subject(s)
B7-1 Antigen , Hair Follicle , Inflammation , Skin , Stem Cells , T-Lymphocytes, Regulatory , Wound Healing , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Wound Healing/immunology , Skin/immunology , Skin/injuries , Skin/pathology , Stem Cells/immunology , Stem Cells/metabolism , Inflammation/immunology , Hair Follicle/immunology , B7-1 Antigen/metabolism , Mice, Inbred C57BL , Mice, Knockout , Re-Epithelialization/immunology , Cell Movement/immunology , Cell Proliferation
3.
Nat Immunol ; 21(6): 671-683, 2020 06.
Article in English | MEDLINE | ID: mdl-32424366

ABSTRACT

Urinary tract infections (UTIs) typically evoke prompt and vigorous innate bladder immune responses, including extensive exfoliation of the epithelium. To explain the basis for the extraordinarily high recurrence rates of UTIs, we examined adaptive immune responses in mouse bladders. We found that, following each bladder infection, a highly T helper type 2 (TH2)-skewed immune response directed at bladder re-epithelialization is observed, with limited capacity to clear infection. This response is initiated by a distinct subset of CD301b+OX40L+ dendritic cells, which migrate into the bladder epithelium after infection before trafficking to lymph nodes to preferentially activate TH2 cells. The bladder epithelial repair response is cumulative and aberrant as, after multiple infections, the epithelium was markedly thickened and bladder capacity was reduced relative to controls. Thus, recurrence of UTIs and associated bladder dysfunction are the outcome of the preferential focus of the adaptive immune response on epithelial repair at the expense of bacterial clearance.


Subject(s)
Cystitis/etiology , Cystitis/metabolism , Lymphocyte Activation/immunology , Mucous Membrane/immunology , Mucous Membrane/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , Bacterial Load , Biomarkers , Cell Line , Cystitis/pathology , Cytokines/metabolism , Disease Models, Animal , Female , Mice , Mice, Knockout , Mucous Membrane/pathology , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/pathology , Urinary Tract Infections/etiology , Urinary Tract Infections/metabolism , Urinary Tract Infections/microbiology , Wound Healing/genetics , Wound Healing/immunology
4.
Cell ; 161(6): 1306-19, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26027738

ABSTRACT

Vertebrate cells have evolved elaborate cell-autonomous defense programs to monitor subcellular compartments for infection and to evoke counter-responses. These programs are activated by pathogen-associated pattern molecules and by various strategies intracellular pathogens employ to alter cellular microenvironments. Here, we show that, when uropathogenic E. coli (UPEC) infect bladder epithelial cells (BECs), they are targeted by autophagy but avoid degradation because of their capacity to neutralize lysosomal pH. This change is detected by mucolipin TRP channel 3 (TRPML3), a transient receptor potential cation channel localized to lysosomes. TRPML3 activation then spontaneously initiates lysosome exocytosis, resulting in expulsion of exosome-encased bacteria. These studies reveal a cellular default system for lysosome homeostasis that has been co-opted by the autonomous defense program to clear recalcitrant pathogens.


Subject(s)
Escherichia coli Infections/immunology , Lysosomes/microbiology , TRPC Cation Channels/metabolism , Transient Receptor Potential Channels/metabolism , Urinary Tract Infections/immunology , Uropathogenic Escherichia coli/physiology , Animals , Autophagy , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Exocytosis , Lysosomes/enzymology , Lysosomes/metabolism , Mice , Urinary Bladder/immunology , Urinary Bladder/microbiology , Urinary Bladder/pathology , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology
5.
Immunity ; 45(1): 94-105, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27438768

ABSTRACT

Although the intracellular trafficking system is integral to most physiologic activities, its role in mediating immune responses to infection has remained elusive. Here, we report that infected bladder epithelial cells (BECs) mobilized the exocyst complex, a powerful exporter of subcellular vesicles, to rapidly expel intracellular bacteria back for clearance. Toll-like receptor (TLR) 4 signals emanating from bacteria-containing vesicles (BCVs) were found to trigger K33-linked polyubiquitination of TRAF3 at Lys168, which was then detected by RalGDS, a guanine nucleotide exchange factor (GEF) that precipitated the assembly of the exocyst complex. Although this distinct modification of TRAF3 served to connect innate immune signaling to the cellular trafficking apparatus, it crucially ensured temporal and spatial accuracy in determining which among the many subcellular vesicles was recognized and selected for expulsion in response to innate immune signaling.


Subject(s)
Escherichia coli/immunology , Immunity, Innate , TNF Receptor-Associated Factor 3/metabolism , Transport Vesicles/metabolism , Urinary Bladder/pathology , Urinary Tract Infections/immunology , Urothelium/immunology , Animals , Cells, Cultured , Escherichia coli/genetics , Exocytosis , Female , Humans , Intracellular Space , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , RNA, Small Interfering/genetics , Signal Transduction , TNF Receptor-Associated Factor 3/genetics , Toll-Like Receptor 4/genetics , Ubiquitination , Urinary Bladder/microbiology , Urothelium/microbiology , ral Guanine Nucleotide Exchange Factor/genetics , ral Guanine Nucleotide Exchange Factor/metabolism
6.
Immunity ; 45(6): 1258-1269, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27939674

ABSTRACT

Programmed death and shedding of epithelial cells is a powerful defense mechanism to reduce bacterial burden during infection but this activity cannot be indiscriminate because of the critical barrier function of the epithelium. We report that during cystitis, shedding of infected bladder epithelial cells (BECs) was preceded by the recruitment of mast cells (MCs) directly underneath the superficial epithelium where they docked and extruded their granules. MCs were responding to interleukin-1ß (IL-1ß) secreted by BECs after inflammasome and caspase-1 signaling. Upon uptake of granule-associated chymase (mouse MC protease 4 [mMCPT4]), BECs underwent caspase-1-associated cytolysis and exfoliation. Thus, infected epithelial cells require a specific cue for cytolysis from recruited sentinel inflammatory cells before shedding.


Subject(s)
Chymases/immunology , Cytotoxins/immunology , Epithelial Cells/microbiology , Mast Cells/immunology , Urinary Tract Infections/immunology , Animals , Cell Degranulation/immunology , Cell Line , Cytoplasmic Granules/chemistry , Female , Fluorescent Antibody Technique , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Nucleic Acids Res ; 51(18): e96, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37638762

ABSTRACT

Fusion genes are well-known cancer drivers. However, most known oncogenic fusions are protein-coding, and very few involve non-coding sequences due to lack of suitable detection tools. We develop SFyNCS to detect fusions of both protein-coding genes and non-coding sequences from transcriptomic sequencing data. The main advantage of this study is that we use somatic structural variations detected from genomic data to validate fusions detected from transcriptomic data. This allows us to comprehensively evaluate various fusion detection and filtering strategies and parameters. We show that SFyNCS has superior sensitivity and specificity over existing algorithms through extensive benchmarking in cancer cell lines and patient samples. We then apply SFyNCS to 9565 tumor samples across 33 tumor types in The Cancer Genome Atlas cohort and detect a total of 165,139 fusions. Among them, 72% of the fusions involve non-coding sequences. We find a long non-coding RNA to recurrently fuse with various oncogenes in 3% of prostate cancers. In addition, we discover fusions involving two non-coding RNAs in 32% of dedifferentiated liposarcomas and experimentally validated the oncogenic functions in mouse model.


Subject(s)
Gene Fusion , Genomics , Neoplasms , Animals , Humans , Mice , Gene Expression Profiling , Genomics/methods , Neoplasms/genetics , Neoplasms/pathology , Oncogenes , Transcriptome
8.
Immunity ; 40(4): 460-2, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24745330

ABSTRACT

Antimicrobial agents secreted into urine potentially play a powerful role in the defense of the urinary tract. In this issue of Immunity, Jaillon et al. (2014) describe a role for pentraxin 3 molecules in complementing the host's cellular innate immune responses to uropathogens.


Subject(s)
C-Reactive Protein/metabolism , Escherichia coli Infections/immunology , Escherichia coli/immunology , Neutrophils/immunology , Pyelonephritis/immunology , Receptors, Pattern Recognition/metabolism , Serum Amyloid P-Component/metabolism , Urinary Tract Infections/immunology , Animals , Female , Humans
9.
Proc Natl Acad Sci U S A ; 117(10): 5339-5350, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32094197

ABSTRACT

Aging manifests with architectural alteration and functional decline of multiple organs throughout an organism. In mammals, aged skin is accompanied by a marked reduction in hair cycling and appearance of bald patches, leading researchers to propose that hair follicle stem cells (HFSCs) are either lost, differentiate, or change to an epidermal fate during aging. Here, we employed single-cell RNA-sequencing to interrogate aging-related changes in the HFSCs. Surprisingly, although numbers declined, aging HFSCs were present, maintained their identity, and showed no overt signs of shifting to an epidermal fate. However, they did exhibit prevalent transcriptional changes particularly in extracellular matrix genes, and this was accompanied by profound structural perturbations in the aging SC niche. Moreover, marked age-related changes occurred in many nonepithelial cell types, including resident immune cells, sensory neurons, and arrector pili muscles. Each of these SC niche components has been shown to influence HF regeneration. When we performed skin injuries that are known to mobilize young HFSCs to exit their niche and regenerate HFs, we discovered that aged skin is defective at doing so. Interestingly, however, in transplantation assays in vivo, aged HFSCs regenerated HFs when supported with young dermis, while young HFSCs failed to regenerate HFs when combined with aged dermis. Together, our findings highlight the importance of SC:niche interactions and favor a model where youthfulness of the niche microenvironment plays a dominant role in dictating the properties of its SCs and tissue health and fitness.


Subject(s)
Hair Follicle/physiology , Regeneration/physiology , Skin Aging/physiology , Stem Cell Niche/physiology , Stem Cells/physiology , Animals , Dermis/physiology , Epidermal Cells/physiology , Epidermis/metabolism , Mice , Mice, Inbred C57BL , Muscles/physiology , Re-Epithelialization , Regeneration/genetics , Sensory Receptor Cells/physiology , Skin Aging/genetics , Stem Cell Niche/genetics , Stem Cell Transplantation , Transcriptome , Wound Healing/genetics , Wound Healing/physiology
10.
Biochem Biophys Res Commun ; 562: 1-8, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34030039

ABSTRACT

Protein lysine propionylation (Kpr) modification is a novel post-translational modification (PTM) of prokaryotic cells that was recently discovered; however, it is not clear how this modification regulates bacterial life. In this study, the protein Kpr modification profile in Aeromonas hydrophila was identified by high specificity antibody-based affinity enrichment combined with high resolution LC MS/MS. A total of 98 lysine-propionylated peptides with 59 Kpr proteins were identified, most of which were associated with energy metabolism, transcription and translation processes. To further understand the role of Kpr modified proteins, the K168 site on malate dehydrogenase (MDH) and K608 site on acetyl-coenzyme A synthetase (AcsA) were subjected to site-directed mutation to arginine (R) and glutamine (Q) to simulate deacylation and propionylation, respectively. Subsequent measurement of the enzymatic activity showed that the K168 site of Kpr modification on MDH may negatively regulate the MDH enzymatic activity while also affecting the survival of mdh derivatives when using glucose as the carbon source, whereas Kpr modification of K608 of AcsA does not. Overall, the results of this study indicate that protein Kpr modification plays an important role in bacterial biological functions, especially those involved in the activity of metabolic enzymes.


Subject(s)
Aeromonas hydrophila/enzymology , Gene Expression Regulation, Enzymologic , Lysine/metabolism , Propionates/metabolism , Aeromonas hydrophila/genetics , Aeromonas hydrophila/metabolism , Bacterial Proteins/metabolism , Carbon/pharmacology , Glucose/pharmacology , Malate Dehydrogenase/chemistry , Malate Dehydrogenase/metabolism , Models, Molecular , Peptides/metabolism , Recombinant Proteins/metabolism
11.
Sensors (Basel) ; 18(10)2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30308993

ABSTRACT

Finding out interested targets from synthetic aperture radar (SAR) imagery is an attractive but challenging problem in SAR application. Traditional target detection is independent on SAR imaging process, which is purposeless and unnecessary. Hence, a new SAR processing approach for simultaneous target detection and image formation is proposed in this paper. This approach is based on SAR imagery formation in time domain and human visual saliency detection. First, a series of sub-aperture SAR images with resolutions from low to high are generated by the time domain SAR imaging method. Then, those multiresolution SAR images are detected by the visual saliency processing, and the corresponding intermediate saliency maps are obtained. The saliency maps are accumulated until the result with a sufficient confidence level. After some screening operations, the target regions on the imaging scene are located, and only these regions are focused with full aperture integration. Finally, we can get the SAR imagery with high-resolution detected target regions but low-resolution clutter background. Experimental results have shown the superiority of the proposed approach for simultaneous target detection and image formation.

12.
NPJ Precis Oncol ; 8(1): 114, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783041

ABSTRACT

The proto-oncogene MYC encodes a nuclear transcription factor that has an important role in a variety of cellular processes, such as cell cycle progression, proliferation, metabolism, adhesion, apoptosis, and therapeutic resistance. MYC amplification is consistently observed in aggressive forms of several solid malignancies and correlates with poor prognosis and distant metastases. While the tumorigenic effects of MYC in patients with head and neck squamous cell carcinoma (HNSCC) are well known, the molecular mechanisms by which the amplification of this gene may confer treatment resistance, especially to immune checkpoint inhibitors, remains under-investigated. Here we present a unique case of a patient with recurrent/metastatic (R/M) HNSCC who, despite initial response to nivolumab-based treatment, developed rapidly progressive metastatic disease after the acquisition of MYC amplification. We conducted comparative transcriptomic analysis of this patient's tumor at baseline and upon progression to interrogate potential molecular processes through which MYC may confer resistance to immunotherapy and/or chemoradiation and used TCGA-HNSC dataset and an institutional cohort to further explore clinicopathologic features and key molecular networks associated with MYC amplification in HNSCC. This study highlights MYC amplification as a potential mechanism of immune checkpoint inhibitor resistance and suggest its use as a predictive biomarker and potential therapeutic target in R/M HNSCC.

13.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066382

ABSTRACT

Fusion genes are well-known cancer drivers. However, very few known oncogenic fusions involve non-coding sequences. We develop SFyNCS with superior performance to detect fusions of both protein-coding genes and non-coding sequences from transcriptomic sequencing data. We validate fusions using somatic structural variations detected from the genomes. This allows us to comprehensively evaluate various fusion detection and filtering strategies and parameters. We detect 165,139 fusions in 9,565 tumor samples across 33 tumor types in the Cancer Genome Atlas cohort. Among them, 72% of the fusions involve non-coding sequences and many are recurrent. We discover two long non-coding RNAs recurrently fused with various partner genes in 32% of dedifferentiated liposarcomas and experimentally validated the oncogenic functions in mouse model.

14.
Cancer Immunol Res ; 11(12): 1571-1577, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37906619

ABSTRACT

The Arthur and Sandra Irving Cancer Immunology Symposium has been created as a platform for established cancer immunologists to mentor trainees and young investigators as they launch their research career in the field. By sharing their different paths to success, the senior faculty mentors provide an invaluable resource to support the development of the next generation of leaders in the cancer immunology community. This Commentary describes some of the key topics that were discussed during the 2022 symposium: scientific and career trajectory, leadership, mentoring, collaborations, and publishing. For each of these topics, established investigators discussed the elements that facilitate success in these areas as well as mistakes that can hinder progress. Herein, we outline the critical points raised in these discussions for establishing a successful independent research career. These points are highly relevant for the broader scientific community.


Subject(s)
Mentoring , Neoplasms , Physicians , Humans , Mentors , Research Personnel , Neoplasms/therapy
15.
Curr Microbiol ; 64(3): 214-21, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22134847

ABSTRACT

Pantoea agglomerans YS19 is a rice endophytic bacterium characterized to form multicellular biofilm-like structures called symplasmata. Phenotypic distinctions between symplasmata-forming cells and planktonic cells are crucial for understanding YS19's survival strategies. In this study, a 43.1 kDa protein SPM43.1 was identified to show significant resistance to the aggregation effect caused by denaturing acidic conditions. MALDI-TOF analysis data indicated that it is a maltose-binding protein homolog while contains sequence homologous to the chaperone protein, ClpB. The purified SPM43.1 protein was detected to exhibit chaperone-like activities at acidic conditions, where its conformation transformed from an ordered to a globally less ordered structure as revealed by circular dichroism spectroscopy, showing a similar property to most chaperone proteins. The expression of SPM43.1 in YS19 is initiated when bacterial cells begin to aggregate, yet its amount in planktonic cells greatly exceeds that in symplasmata-forming cells, suggesting its crucial role to the survival of planktonic cells in experiencing environmental fluctuations. However, the bacterium prefers to form symplasmata, while not to express SPM43.1 proteins, for surviving the artificially set fluctuant (acid here) environments. This study provides valuable information on the life styles and survival strategies of microorganisms that forms multicellular aggregates at specific growth stages.


Subject(s)
Acids/toxicity , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Molecular Chaperones/metabolism , Pantoea/drug effects , Pantoea/physiology , Adaptation, Physiological , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Circular Dichroism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/isolation & purification , Molecular Weight , Protein Conformation , Stress, Physiological
16.
Cell Rep ; 40(13): 111346, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170813

ABSTRACT

Mast cells (MCs) are granulated cells implicated in inflammatory disorders because of their capacity to degranulate, releasing prestored proinflammatory mediators. As MCs have the unique capacity to reform granules following degranulation in vitro, their potential to regranulate in vivo is linked to their pathogenesis. It is not known what factors regulate regranulation, let alone if regranulation occurs in vivo. We report that mice can undergo multiple bouts of MC regranulation following successive anaphylactic reactions. mTORC1, a nutrient sensor that activates protein and lipid synthesis, is necessary for regranulation. mTORC1 activity is regulated by a glucose-6-phosphate transporter, Slc37a2, which increases intracellular glucose-6-phosphate and ATP during regranulation, two upstream signals of mTOR. Additionally, Slc37a2 concentrates extracellular metabolites within endosomes, which are trafficked into nascent granules. Thus, the metabolic switch associated with MC regranulation is mediated by the interactions of a cellular metabolic sensor and a transporter of extracellular metabolites into MC granules.


Subject(s)
Cell Degranulation , Mast Cells , Adenosine Triphosphate/metabolism , Animals , Antiporters , Glucose/metabolism , Glucose-6-Phosphate/metabolism , Lipids , Mast Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Phosphate Transport Proteins/metabolism
17.
Front Plant Sci ; 12: 642917, 2021.
Article in English | MEDLINE | ID: mdl-33841469

ABSTRACT

Chlorophyll content is an important indicator of winter wheat health status. It is valuable to investigate whether the relationship between spectral reflectance and the chlorophyll content differs under elevated CO2 condition. In this open-top chamber experiment, the CO2 treatments were categorized into ambient (aCO2; about 400 µmol⋅mol-1) or elevated (eCO2; ambient + 200 µmol⋅mol-1) levels. The correlation between the spectral reflectance and the chlorophyll content of the winter wheat were analyzed by constructing the estimation model based on red edge position, sensitive band and spectral index methods, respectively. The results showed that there was a close relationship between chlorophyll content and the canopy spectral curve characteristics of winter wheat. Chlorophyll content was better estimated based on sensitive spectral bands and difference vegetation index (DVI) under both aCO2 and eCO2 conditions, though the accuracy of the models varied under different CO2 conditions. The results suggested that the hyperspectral measurement can be effectively used to estimate the chlorophyll content under both aCO2 and eCO2 conditionsand could provide a useful tool for monitoring plants physiology and growth.

18.
Front Plant Sci ; 12: 651606, 2021.
Article in English | MEDLINE | ID: mdl-33889167

ABSTRACT

Investigating the diurnal and seasonal variations of plant photosynthetic performance under future atmospheric CO2 conditions is essential for understanding plant adaptation to global change and for estimating parameters of ecophysiological models. In this study, diurnal changes of net photosynthetic rate (Anet), stomatal conductance (gs), and photochemical efficiency of PSII (Fv'/F m ') were measured in two rice cultivars grown in the open-top-chambers at ambient (∼450 µmol mol-1) and elevated (∼650 µmol mol-1) CO2 concentration [(CO2)] throughout the growing season for 2 years. The results showed that elevated (CO2) greatly increased Anet, especially at jointing stage. This stimulation was acclimated with the advance of growing season and was not affected by either stomatal limitations or Rubisco activity. Model parameters in photosynthesis model (Vcmax, Jmax, and Rd) and two stomatal conductance models (m and g1) varied across growing stages and m and g1 also varied across (CO2) treatments and cultivars, which led to more accurate photosynthesis and stomatal conductance simulations when using these cultivar-, CO2-, and stage- specific parameters. The results in the study suggested that further research is still needed to investigate the dominant factors contributing to the acclimation of photosynthetic capacity under future elevated CO2 conditions. The study also highlighted the need of investigating the impact of other environmental, such as nitrogen and O3, and non-environmental factors, such as additional rice cultivars, on the variations of these parameters in photosynthesis and stomatal conductance models and their further impacts on simulations in large scale carbon and water cycles.

19.
Nat Cell Biol ; 22(6): 640-650, 2020 06.
Article in English | MEDLINE | ID: mdl-32393888

ABSTRACT

Tissue homeostasis and regeneration rely on resident stem cells (SCs), whose behaviour is regulated through niche-dependent crosstalk. The mechanisms underlying SC identity are still unfolding. Here, using spatiotemporal gene ablation in murine hair follicles, we uncover a critical role for the transcription factors (TFs) nuclear factor IB (NFIB) and IX (NFIX) in maintaining SC identity. Without NFI TFs, SCs lose their hair-regenerating capability, and produce skin bearing striking resemblance to irreversible human alopecia, which also displays reduced NFIs. Through single-cell transcriptomics, ATAC-Seq and ChIP-Seq profiling, we expose a key role for NFIB and NFIX in governing super-enhancer maintenance of the key hair follicle SC-specific TF genes. When NFIB and NFIX are genetically removed, the stemness epigenetic landscape is lost. Super-enhancers driving SC identity are decommissioned, while unwanted lineages are de-repressed ectopically. Together, our findings expose NFIB and NFIX as crucial rheostats of tissue homeostasis, functioning to safeguard the SC epigenome from a breach in lineage confinement that otherwise triggers irreversible tissue degeneration.


Subject(s)
Alopecia/pathology , Cell Differentiation , Chromatin/metabolism , Hair Follicle/cytology , NFI Transcription Factors/physiology , Stem Cells/cytology , Alopecia/genetics , Alopecia/metabolism , Animals , Cells, Cultured , Chromatin/genetics , Female , Hair Follicle/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Regeneration , Stem Cells/metabolism
20.
Science ; 366(6470): 1218-1225, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31672914

ABSTRACT

Tissues rely on stem cells (SCs) for homeostasis and wound repair. SCs reside in specialized microenvironments (niches) whose complexities and roles in orchestrating tissue growth are still unfolding. Here, we identify lymphatic capillaries as critical SC-niche components. In skin, lymphatics form intimate networks around hair follicle (HF) SCs. When HFs regenerate, lymphatic-SC connections become dynamic. Using a mouse model, we unravel a secretome switch in SCs that controls lymphatic behavior. Resting SCs express angiopoietin-like protein 7 (Angptl7), promoting lymphatic drainage. Activated SCs switch to Angptl4, triggering transient lymphatic dissociation and reduced drainage. When lymphatics are perturbed or the secretome switch is disrupted, HFs cycle precociously and tissue regeneration becomes asynchronous. In unearthing lymphatic capillaries as a critical SC-niche element, we have learned how SCs coordinate their activity across a tissue.


Subject(s)
Hair Follicle/physiology , Lymphatic Vessels/physiology , Regeneration , Stem Cell Niche/physiology , Stem Cells/physiology , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 7 , Angiopoietin-like Proteins/metabolism , Animals , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Stem Cells/metabolism , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL