Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(36): e2202930119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037336

ABSTRACT

In plants, jasmonate signaling regulates a wide range of processes from growth and development to defense responses and thermotolerance. Jasmonates, such as jasmonic acid (JA), (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), 12-oxo-10,15(Z)-phytodienoic acid (OPDA), and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), are derived from C18 (18 Carbon atoms) and C16 polyunsaturated fatty acids (PUFAs), which are found ubiquitously in the plant kingdom. Bryophytes are also rich in C20 and C22 long-chain polyunsaturated fatty acids (LCPUFAs), which are found only at low levels in some vascular plants but are abundant in organisms of other kingdoms, including animals. The existence of bioactive jasmonates derived from LCPUFAs is currently unknown. Here, we describe the identification of an OPDA-like molecule derived from a C20 fatty acid (FA) in the liverwort Marchantia polymorpha (Mp), which we term (5Z,8Z)-10-(4-oxo-5-((Z)-pent-2-en-1-yl)cyclopent-2-en-1-yl)deca-5,8-dienoic acid (C20-OPDA). This molecule accumulates upon wounding and, when applied exogenously, can activate known Coronatine Insensitive 1 (COI1) -dependent and -independent jasmonate responses. Furthermore, we identify a dn-OPDA-like molecule (Δ4-dn-OPDA) deriving from C20-OPDA and demonstrate it to be a ligand of the jasmonate coreceptor (MpCOI1-Mp Jasmonate-Zinc finger inflorescence meristem domain [MpJAZ]) in Marchantia. By analyzing mutants impaired in the production of LCPUFAs, we elucidate the major biosynthetic pathway of C20-OPDA and Δ4-dn-OPDA. Moreover, using a double mutant compromised in the production of both Δ4-dn-OPDA and dn-OPDA, we demonstrate the additive nature of these molecules in the activation of jasmonate responses. Taken together, our data identify a ligand of MpCOI1 and demonstrate LCPUFAs as a source of bioactive jasmonates that are essential to the immune response of M. polymorpha.


Subject(s)
Marchantia , Oxylipins , Cyclopentanes/metabolism , Fatty Acids, Unsaturated/metabolism , Ligands , Marchantia/chemistry , Marchantia/genetics , Mutation , Oxylipins/metabolism
2.
Curr Opin Plant Biol ; 77: 102498, 2024 02.
Article in English | MEDLINE | ID: mdl-38142620

ABSTRACT

Plants engage with a wide variety of microorganisms either in parasitic or mutualistic relationships, which have helped them to adapt to terrestrial ecosystems. Microbial interactions have driven plant evolution and led to the emergence of complex interaction outcomes via suppression of host defenses by evolving pathogens. The evolution of plant-microbe interactions is shaped by conserved host and pathogen gene modules and fast-paced lineage-specific adaptability which determines the interaction outcome. Recent findings from different microbes ranging from bacteria, oomycetes, and fungi suggest recurrent concepts in establishing interactions with evolutionarily distant plant hosts, but also clade-specific adaptation that ultimately contributes to pathogenicity. Here, we revisit some of the latest features that illustrate shared colonization strategies of the fungal pathogen Fusarium oxysporum on distant plant lineages and lineage-specific adaptability of mini-chromosomal units encoding effectors, for shaping host-specific pathogenicity in angiosperms.


Subject(s)
Embryophyta , Fusarium , Fusarium/genetics , Plant Diseases/microbiology , Ecosystem , Plants/microbiology , Host-Pathogen Interactions , Fungi
3.
Curr Biol ; 33(17): 3732-3746.e8, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37619565

ABSTRACT

Pattern-recognition receptor (PRR)-triggered immunity (PTI) wards off a wide range of pathogenic microbes, playing a pivotal role in angiosperms. The model liverwort Marchantia polymorpha triggers defense-related gene expression upon sensing components of bacterial and fungal extracts, suggesting the existence of PTI in this plant model. However, the molecular components of the putative PTI in M. polymorpha and the significance of PTI in bryophytes have not yet been described. We here show that M. polymorpha has four lysin motif (LysM)-domain-containing receptor homologs, two of which, LysM-receptor-like kinase (LYK) MpLYK1 and LYK-related (LYR) MpLYR, are responsible for sensing chitin and peptidoglycan fragments, triggering a series of characteristic immune responses. Comprehensive phosphoproteomic analysis of M. polymorpha in response to chitin treatment identified regulatory proteins that potentially shape LysM-mediated PTI. The identified proteins included homologs of well-described PTI components in angiosperms as well as proteins whose roles in PTI are not yet determined, including the blue-light receptor phototropin MpPHOT. We revealed that MpPHOT is required for negative feedback of defense-related gene expression during PTI. Taken together, this study outlines the basic framework of LysM-mediated PTI in M. polymorpha and highlights conserved elements and new aspects of pattern-triggered immunity in land plants.


Subject(s)
Embryophyta , Magnoliopsida , Marchantia , Chitin , Innate Immunity Recognition , Marchantia/genetics , Lysine/chemistry , Lysine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL