Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mol Cell ; 79(2): 251-267.e6, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32504555

ABSTRACT

The core components of the nuclear RNA export pathway are thought to be required for export of virtually all polyadenylated RNAs. Here, we depleted different proteins that act in nuclear export in human cells and quantified the transcriptome-wide consequences on RNA localization. Different genes exhibited substantially variable sensitivities, with depletion of NXF1 and TREX components causing some transcripts to become strongly retained in the nucleus while others were not affected. Specifically, NXF1 is preferentially required for export of single- or few-exon transcripts with long exons or high A/U content, whereas depletion of TREX complex components preferentially affects spliced and G/C-rich transcripts. Using massively parallel reporter assays, we identified short sequence elements that render transcripts dependent on NXF1 for their export and identified synergistic effects of splicing and NXF1. These results revise the current model of how nuclear export shapes the distribution of RNA within human cells.


Subject(s)
Active Transport, Cell Nucleus , Multiprotein Complexes/metabolism , Nucleocytoplasmic Transport Proteins/physiology , RNA Transport , RNA-Binding Proteins/physiology , RNA/metabolism , Animals , Base Sequence , Cell Line , Cell Nucleus/metabolism , Humans , Mice , RNA/chemistry , RNA Stability , RNA-Seq
2.
Nucleic Acids Res ; 50(18): 10643-10664, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36156153

ABSTRACT

Asymmetric subcellular mRNA localization allows spatial regulation of gene expression and functional compartmentalization. In neurons, localization of specific mRNAs to neurites is essential for cellular functioning. However, it is largely unknown how transcript sorting works in a sequence-specific manner. Here, we combined subcellular transcriptomics and massively parallel reporter assays and tested ∼50 000 sequences for their ability to localize to neurites. Mapping the localization potential of >300 genes revealed two ways neurite targeting can be achieved: focused localization motifs and broadly encoded localization potential. We characterized the interplay between RNA stability and localization and identified motifs able to bias localization towards neurite or soma as well as the trans-acting factors required for their action. Based on our data, we devised machine learning models that were able to predict the localization behavior of novel reporter sequences. Testing this predictor on native mRNA sequencing data showed good agreement between predicted and observed localization potential, suggesting that the rules uncovered by our MPRA also apply to the localization of native full-length transcripts.


Subject(s)
Neurons , RNA Stability , Neurites/metabolism , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trans-Activators/metabolism
3.
PLoS Biol ; 14(3): e1002412, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27011106

ABSTRACT

During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Chromosomal Proteins, Non-Histone/metabolism , Crossing Over, Genetic , Animals , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation , Endonucleases/metabolism , Mutation , Pachytene Stage
4.
EMBO Rep ; 12(10): 1077-84, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21869818

ABSTRACT

Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and ß-actin RNAs localize to dendrites in distinct RNPs, which contain--unexpectedly--very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity.


Subject(s)
Actins/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Microtubule-Associated Proteins/genetics , RNA, Messenger/metabolism , Animals , Dendrites/metabolism , Gene Expression Regulation , Neurons/metabolism , RNA Transport , RNA-Binding Proteins/metabolism , Rats , Ribonucleoproteins/metabolism
5.
Cell Rep ; 42(8): 112879, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37537844

ABSTRACT

Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop opsoclonus myoclonus ataxia syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor-infiltrating T and B cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS-associated neuroblastomas. We found greater B and T cell infiltration in OMAS-associated tumors compared to controls and showed that both were polyclonal expansions. Tertiary lymphoid structures (TLSs) were enriched in OMAS-associated tumors. We identified significant enrichment of the major histocompatibility complex (MHC) class II allele HLA-DOB∗01:01 in OMAS patients. OMAS severity scores were associated with the expression of several candidate autoimmune genes. We propose a model in which polyclonal auto-reactive B lymphocytes act as antigen-presenting cells and drive TLS formation, thereby supporting both sustained polyclonal T cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology.


Subject(s)
Neuroblastoma , Opsoclonus-Myoclonus Syndrome , Child , Humans , Autoimmunity , Neuroblastoma/complications , Neuroblastoma/metabolism , Opsoclonus-Myoclonus Syndrome/complications , Opsoclonus-Myoclonus Syndrome/pathology , Autoantibodies , Genes, MHC Class II , Ataxia
6.
iScience ; 25(11): 105270, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36304109

ABSTRACT

The seven-transmembrane superfamily member 3 protein (TM7SF3) is a p53-regulated homeostatic factor that attenuates cellular stress and the unfolded protein response. Here we show that TM7SF3 localizes to nuclear speckles; eukaryotic nuclear bodies enriched in splicing factors. This unexpected location for a trans -membranal protein enables formation of stable complexes between TM7SF3 and pre-mRNA splicing factors including DHX15, LARP7, HNRNPU, RBM14, and HNRNPK. Indeed, TM7SF3 regulates alternative splicing of >330 genes, mainly at the 3'end of introns by directly modulating the activity of splicing factors such as HNRNPK. These effects are observed both in cell lines and primary human pancreatic islets. Accordingly, silencing of TM7SF3 results in differential expression of 1465 genes (about 7% of the human genome); with 844 and 621 genes being up- or down-regulated, respectively. Our findings implicate TM7SF3, as a resident protein of nuclear speckles and suggest a role for seven-transmembrane proteins as regulators of alternative splicing.

7.
J Neurosci ; 30(11): 4160-70, 2010 Mar 17.
Article in English | MEDLINE | ID: mdl-20237286

ABSTRACT

Localization of mRNAs to postsynaptic sites and their subsequent translation is thought to contribute to synapse-specific plasticity. However, the direct visualization of dendritic RNA transport in living neurons remains a major challenge. Here, we analyze the transport of Alexa-labeled RNAs microinjected into mature hippocampal neurons. We show that microinjected MAP2 and CaMKIIalpha RNAs form particles that localize into dendrites as their endogenous counterparts. In contrast, nonlocalizing RNAs or truncated CaMKIIalpha, lacking the dendritic targeting element, remain in the cell body. Furthermore, our microinjection approach allowed us to identify a novel dendritically localized RNA, Septin7. Time-lapse videomicroscopy of neurons injected with CaMKIIalpha and Septin7 RNAs demonstrates fast directional movement along the dendrites of hippocampal neurons, with similar kinetics to Staufen1 ribonucleoprotein particles (RNPs). Coinjection and simultaneous visualization of two RNAs, as well as double detection of the corresponding endogenous RNAs, reveal that neuronal transcripts are differentially sorted in dendritic RNPs.


Subject(s)
Dendrites/genetics , Dendrites/metabolism , Hippocampus/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Transcription, Genetic/physiology , Animals , Cells, Cultured , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Hippocampus/cytology , Mice , Microinjections , Neurons/metabolism , Protein Transport/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Ribonucleoproteins/biosynthesis , Septins
8.
Proc Natl Acad Sci U S A ; 105(42): 16374-9, 2008 Oct 21.
Article in English | MEDLINE | ID: mdl-18922781

ABSTRACT

The dsRNA-binding protein Staufen was the first RNA-binding protein proven to play a role in RNA localization in Drosophila. A mammalian homolog, Staufen1 (Stau1), has been implicated in dendritic RNA localization in neurons, translational control, and mRNA decay. However, the precise mechanisms by which it fulfills these specific roles are only partially understood. To determine its physiological functions, the murine Stau1 gene was disrupted by homologous recombination. Homozygous stau1(tm1Apa) mutant mice express a truncated Stau1 protein lacking the functional RNA-binding domain 3. The level of the truncated protein is significantly reduced. Cultured hippocampal neurons derived from stau1(tm1Apa) homozygous mice display deficits in dendritic delivery of Stau1-EYFP and beta-actin mRNA-containing ribonucleoprotein particles (RNPs). Furthermore, these neurons have a significantly reduced dendritic tree and develop fewer synapses. Homozygous stau1(tm1Apa) mutant mice are viable and show no obvious deficits in development, fertility, health, overall brain morphology, and a variety of behavioral assays, e.g., hippocampus-dependent learning. However, we did detect deficits in locomotor activity. Our data suggest that Stau1 is crucial for synapse development in vitro but not critical for normal behavioral function.


Subject(s)
Alleles , Dendrites/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Animals , Gene Expression Regulation , Hippocampus/metabolism , Homozygote , Locomotion , Mice , Mutation/genetics , Protein Binding , RNA/metabolism , RNA-Binding Proteins/genetics
9.
Article in English | MEDLINE | ID: mdl-20237785

ABSTRACT

It is now generally accepted that RNA localization in the central nervous system conveys important roles both during development and in the adult brain. Of special interest is protein synthesis located at the synapse, as this potentially confers selective synaptic modification and has been implicated in the establishment of memories. However, the underlying molecular events are largely unknown. In this review, we will first discuss novel findings that highlight the role of RNA localization in neurons. We will focus on the role of RNA localization in neurotrophin signaling, axon outgrowth, dendrite and dendritic spine morphogenesis as well as in synaptic plasticity. Second, we will briefly present recent work on the role of microRNAs in translational control in dendrites and its implications for learning and memory. Finally, we discuss recent approaches to visualize RNAs in living cells and their employment for studying RNA trafficking in neurons.


Subject(s)
Neurites/metabolism , RNA/metabolism , Synapses/metabolism , Animals , Dendrites/physiology , Humans , Morphogenesis/physiology , Nerve Growth Factors/physiology , Signal Transduction/physiology
10.
Nat Commun ; 11(1): 3061, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546731

ABSTRACT

Programmed ribosomal frameshifting (PRF) is the controlled slippage of the translating ribosome to an alternative frame. This process is widely employed by human viruses such as HIV and SARS coronavirus and is critical for their replication. Here, we developed a high-throughput approach to assess the frameshifting potential of a sequence. We designed and tested >12,000 sequences based on 15 viral and human PRF events, allowing us to systematically dissect the rules governing ribosomal frameshifting and discover novel regulatory inputs based on amino acid properties and tRNA availability. We assessed the natural variation in HIV gag-pol frameshifting rates by testing >500 clinical isolates and identified subtype-specific differences and associations between viral load in patients and the optimality of PRF rates. We devised computational models that accurately predict frameshifting potential and frameshifting rates, including subtle differences between HIV isolates. This approach can contribute to the development of antiviral agents targeting PRF.


Subject(s)
Frameshifting, Ribosomal , High-Throughput Nucleotide Sequencing/methods , Fusion Proteins, gag-pol/genetics , Genetic Variation , Green Fluorescent Proteins/genetics , HIV-1/genetics , Humans , K562 Cells , Luminescent Proteins/genetics , Protein Biosynthesis , RNA, Transfer/genetics , Red Fluorescent Protein
11.
Nat Commun ; 10(1): 4572, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31594945

ABSTRACT

Most human genes are alternatively spliced, allowing for a large expansion of the proteome. The multitude of regulatory inputs to splicing limits the potential to infer general principles from investigating native sequences. Here, we create a rationally designed library of >32,000 splicing events to dissect the complexity of splicing regulation through systematic sequence alterations. Measuring RNA and protein splice isoforms allows us to investigate both cause and effect of splicing decisions, quantify diverse regulatory inputs and accurately predict (R2 = 0.73-0.85) isoform ratios from sequence and secondary structure. By profiling individual cells, we measure the cell-to-cell variability of splicing decisions and show that it can be encoded in the DNA and influenced by regulatory inputs, opening the door for a novel, single-cell perspective on splicing regulation.


Subject(s)
Alternative Splicing , Proteome/genetics , RNA, Messenger/genetics , Single-Cell Analysis , Cloning, Molecular , Computational Biology , Gene Expression Profiling , Gene Library , High-Throughput Nucleotide Sequencing , Humans , K562 Cells , Machine Learning , Mutation , Protein Isoforms/genetics , RNA Splice Sites/genetics , Sequence Analysis, DNA
12.
Cell Rep ; 8(5): 1380-90, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25199833

ABSTRACT

Cell polarity in one-cell C. elegans embryos guides asymmetric cell division and cell-fate specification. Shortly after fertilization, embryos establish two antagonistic cortical domains of PAR proteins. Here, we find that the conserved polarity factor PAR-5 regulates PAR domain size in a dose-dependent manner. Using quantitative imaging and controlled genetic manipulation, we find that PAR-5 protein levels reflect the cumulative output of three mRNA isoforms with different translational efficiencies mediated by their 3' UTRs. 3' UTR selection is regulated, influencing PAR-5 protein abundance. Alternative splicing underlies the selection of par-5 3' UTR isoforms. 3' UTR splicing is enhanced by the SR protein kinase SPK-1, and accordingly, SPK-1 is required for wild-type PAR-5 levels and PAR domain size. Precise regulation of par-5 isoform selection is essential for polarization when the posterior PAR network is compromised. Together, strict control of PAR-5 protein levels and feedback from polarity to par-5 3' UTR selection confer robustness to embryo polarization.


Subject(s)
3' Untranslated Regions , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Cell Polarity , Alternative Splicing , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Homeostasis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , RNA Isoforms/genetics , RNA Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL