Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Biol Chem ; 300(3): 105768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367664

ABSTRACT

Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.


Subject(s)
Galactans , Mycobacterium , Galactans/biosynthesis , Polymers/metabolism , Proteomics , Transferases/metabolism , Mycobacterium/metabolism
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879617

ABSTRACT

Mycobacterium tuberculosis, one of the deadliest pathogens in human history, is distinguished by a unique, multilayered cell wall, which offers the bacterium a high level of protection from the attacks of the host immune system. The primary structure of the cell wall core, composed of covalently linked peptidoglycan, branched heteropolysaccharide arabinogalactan, and mycolic acids, is well known, and numerous enzymes involved in the biosynthesis of its components are characterized. The cell wall biogenesis takes place at both cytoplasmic and periplasmic faces of the plasma membrane, and only recently some of the specific transport systems translocating the metabolic intermediates between these two compartments have been characterized [M. Jackson, C. M. Stevens, L. Zhang, H. I. Zgurskaya, M. Niederweis, Chem. Rev., 10.1021/acs.chemrev.0c00869 (2020)]. In this work, we use CRISPR interference methodology in Mycobacterium smegmatis to functionally characterize an ATP-binding cassette (ABC) transporter involved in the translocation of galactan precursors across the plasma membrane. We show that genetic knockdown of the transmembrane subunit of the transporter results in severe morphological changes and the accumulation of an aberrantly long galactan precursor. Based on similarities with structures and functions of specific O-antigen ABC transporters of gram-negative bacteria [C. Whitfield, D. M. Williams, S. D. Kelly, J. Biol. Chem. 295, 10593-10609 (2020)], we propose a model for coupled synthesis and export of the galactan polymer precursor in mycobacteria.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Galactans/metabolism , Lipopolysaccharides/metabolism , Mycobacterium smegmatis/metabolism , ATP-Binding Cassette Transporters/genetics , Models, Molecular , Mycobacterium smegmatis/genetics
3.
Beilstein J Org Chem ; 16: 1853-1862, 2020.
Article in English | MEDLINE | ID: mdl-32802202

ABSTRACT

A series of ten novel ᴅ-fructofuranosyl and ᴅ-tagatofuranosyl sulfones bearing a 1-O-phosphono moiety and three different substituents at C-2 has been prepared. Due to the structural similarities of these scaffolds to the native substrate of mycobacterial galactofuranosyltransferase GlfT2 in the transition state, we evaluated these compounds by computational methods, as well as in an enzyme assay for the possible inhibition of the mycobacterial galactan biosynthesis. Our data show that despite favorable docking scores to the active site of GlfT2, none of these compounds serve as efficient inhibitors of the enzymes involved in the mycobacterial galactan biosynthesis.

4.
Mol Microbiol ; 103(1): 13-25, 2017 01.
Article in English | MEDLINE | ID: mdl-27677649

ABSTRACT

There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.


Subject(s)
Antitubercular Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pyrimidines/pharmacokinetics , Anti-Bacterial Agents/pharmacokinetics , Cell Enlargement , Drug Discovery/methods , Gene Expression Regulation, Bacterial/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Pyrimidines/chemistry , Pyrimidines/metabolism , Sequence Homology, Amino Acid , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics , Time-Lapse Imaging
5.
J Biol Chem ; 291(36): 18867-79, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27417139

ABSTRACT

The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.


Subject(s)
Bacterial Proteins/genetics , Cell Wall/metabolism , Galactans/metabolism , Mycobacterium tuberculosis/metabolism , Peptidoglycan/metabolism , Teichoic Acids/metabolism , Bacterial Proteins/metabolism , Cell Wall/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Galactans/genetics , Mycobacterium tuberculosis/genetics , Peptidoglycan/genetics , Teichoic Acids/genetics
6.
Article in English | MEDLINE | ID: mdl-28874370

ABSTRACT

The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Transferases (Other Substituted Phosphate Groups)/metabolism , Animals , Bacterial Proteins/analysis , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Evaluation, Preclinical/methods , Gene Expression Regulation, Bacterial/drug effects , Gene Silencing , Macrophages/microbiology , Microbial Sensitivity Tests , Molecular Targeted Therapy/methods , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Radiometry/methods , Transferases/analysis , Transferases/metabolism , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Transferases (Other Substituted Phosphate Groups)/genetics , Tuberculosis/microbiology , Tunicamycin/pharmacology , Uridine/analogs & derivatives , Uridine/pharmacology
7.
Proc Natl Acad Sci U S A ; 110(27): E2510-7, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23776209

ABSTRACT

A cell-based phenotypic screen for inhibitors of biofilm formation in mycobacteria identified the small molecule TCA1, which has bactericidal activity against both drug-susceptible and -resistant Mycobacterium tuberculosis (Mtb) and sterilizes Mtb in vitro combined with rifampicin or isoniazid. In addition, TCA1 has bactericidal activity against nonreplicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models both alone and combined with rifampicin or isoniazid. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb persistence. Genetic and affinity-based methods identified decaprenyl-phosphoryl-ß-D-ribofuranose oxidoreductase DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as targets responsible for the activity of TCA1. These in vitro and in vivo results indicate that this compound functions by a unique mechanism and suggest that TCA1 may lead to the development of a class of antituberculosis agents.


Subject(s)
Antitubercular Agents/pharmacology , Benzothiazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Thiophenes/pharmacology , Tuberculosis, Pulmonary/drug therapy , Alcohol Oxidoreductases , Amino Acid Sequence , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Carbohydrate Epimerases/antagonists & inhibitors , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Drug Resistance, Bacterial , Female , Genes, Bacterial , High-Throughput Screening Assays , Isoniazid/administration & dosage , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Sequence Data , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Oxidoreductases/genetics , Rifampin/administration & dosage , Thiophenes/administration & dosage , Thiophenes/chemistry , Tuberculosis, Pulmonary/microbiology
8.
J Bacteriol ; 197(23): 3686-97, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26369580

ABSTRACT

UNLABELLED: Mycobacterium tuberculosis possesses a thick and highly hydrophobic cell wall principally composed of a mycolyl-arabinogalactan-peptidoglycan complex, which is critical for survival and virulence. DprE1 is a well-characterized component of decaprenyl-phospho-ribose epimerase, which produces decaprenyl-phospho-arabinose (DPA) for the biosynthesis of mycobacterial arabinans. Upstream of dprE1 lies rv3789, which encodes a short transmembrane protein of the GtrA family, whose members are often involved in the synthesis of cell surface polysaccharides. We demonstrate that rv3789 and dprE1 are cotranscribed from a common transcription start site situated 64 bp upstream of rv3789. Topology mapping revealed four transmembrane domains in Rv3789 and a cytoplasmic C terminus consistent with structural models built using analysis of sequence coevolution. To investigate its role, we generated an unmarked rv3789 deletion mutant in M. tuberculosis. The mutant was characterized by impaired growth and abnormal cell morphology, since the cells were shorter and more swollen than wild-type cells. This phenotype likely stems from the decreased incorporation of arabinan into arabinogalactan and was accompanied by an accumulation of DPA. A role for Rv3789 in arabinan biosynthesis was further supported by its interaction with the priming arabinosyltransferase AftA, as demonstrated by a two-hybrid approach. Taken together, the data suggest that Rv3789 does not act as a DPA flippase but, rather, recruits AftA for arabinogalactan biosynthesis. IMPORTANCE: Upstream of the essential dprE1 gene, encoding a key enzyme of the decaprenyl phospho-arabinose (DPA) pathway, lies rv3789, coding for a short transmembrane protein of unknown function. In this study, we demonstrated that rv3789 and dprE1 are cotranscribed from a common transcription start site located 64 bp upstream of rv3789 in M. tuberculosis. Furthermore, the deletion of rv3789 led to a reduction in arabinan content and to an accumulation of DPA, confirming that Rv3789 plays a role in arabinan biosynthesis. Topology mapping, structural modeling, and protein interaction studies suggest that Rv3789 acts as an anchor protein recruiting AftA, the first arabinosyl transferase. This investigation provides deeper insight into the mechanism of arabinan biosynthesis in mycobacteria.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Arabinose/metabolism , Bacterial Proteins/metabolism , Galactans/metabolism , Mycobacterium tuberculosis/enzymology , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/genetics , Amino Acid Sequence , Arabinose/analogs & derivatives , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Molecular Sequence Data , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Sequence Alignment , Terpenes/metabolism
9.
Antimicrob Agents Chemother ; 59(8): 4446-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25987616

ABSTRACT

8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1) and display nanomolar bactericidal activity against Mycobacterium tuberculosis in vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 µg/ml against M. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 µM and present favorable in vitro absorption-distribution-metabolism-excretion/toxicity (ADME/T) and in vivo pharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Piperazines/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Spiro Compounds/pharmacology , Thiazines/pharmacology , Animals , Antitubercular Agents/pharmacology , Catalytic Domain/drug effects , Disease Models, Animal , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/metabolism
10.
J Bacteriol ; 196(19): 3441-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25049093

ABSTRACT

The cell envelope of Mycobacterium tuberculosis contains glycans and lipids of peculiar structure that play prominent roles in the biology and pathogenesis of tuberculosis. Consequently, the chemical structure and biosynthesis of the cell wall have been intensively investigated in order to identify novel drug targets. Here, we validate that the function of phosphatidyl-myo-inositol mannosyltransferase PimA is vital for M. tuberculosis in vitro and in vivo. PimA initiates the biosynthesis of phosphatidyl-myo-inositol mannosides by transferring a mannosyl residue from GDP-Man to phosphatidyl-myo-inositol on the cytoplasmic side of the plasma membrane. To prove the essential nature of pimA in M. tuberculosis, we constructed a pimA conditional mutant by using the TetR-Pip off system and showed that downregulation of PimA expression causes bactericidality in batch cultures. Consistent with the biochemical reaction catalyzed by PimA, this phenotype was associated with markedly reduced levels of phosphatidyl-myo-inositol dimannosides, essential structural components of the mycobacterial cell envelope. In addition, the requirement of PimA for viability was clearly demonstrated during macrophage infection and in two different mouse models of infection, where a dramatic decrease in viable counts was observed upon silencing of the gene. Notably, depletion of PimA resulted in complete clearance of the mouse lungs during both the acute and chronic phases of infection. Altogether, the experimental data highlight the importance of the phosphatidyl-myo-inositol mannoside biosynthetic pathway for M. tuberculosis and confirm that PimA is a novel target for future drug discovery programs.


Subject(s)
Bacterial Proteins/metabolism , Mannosyltransferases/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/growth & development , Tuberculosis/microbiology , Animals , Bacterial Proteins/genetics , Female , Humans , Macrophages/metabolism , Macrophages/microbiology , Mannosyltransferases/genetics , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/genetics , Phosphatidylinositols/biosynthesis
11.
Infect Immun ; 82(5): 1850-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24566628

ABSTRACT

Tuberculosis remains a major worldwide epidemic because of its sole etiological agent, Mycobacterium tuberculosis. Ethionamide (ETH) is one of the major antitubercular drugs used to treat infections with multidrug-resistant M. tuberculosis strains. ETH is a prodrug that requires activation within the mycobacterial cell; its bioactivation involves the ethA-ethR locus, which encodes the monooxygenase EthA, while EthR is a transcriptional regulator that binds to the intergenic promoter region of the ethA-ethR locus. While most studies have focused on the role of EthA-EthR in ETH bioactivation, its physiological role in mycobacteria has remained elusive, although a role in bacterial cell detoxification has been proposed. Moreover, the importance of EthA-EthR in vivo has never been reported on. Here we constructed and characterized an EthA-EthR-deficient mutant of Mycobacterium bovis BCG. Our results indicate that absence of the ethA-ethR locus led to greater persistence of M. bovis BCG in the mouse model of mycobacterial infection, which correlated with greater adherence to mammalian cells. Furthermore, analysis of cell wall lipid composition by thin-layer chromatography and mass spectrometry revealed differences between the ethA-ethR KO mutant and the parental strain in the relative amounts of α- and keto-mycolates. Therefore, we propose here that M. bovis BCG ethA-ethR is involved in the cell wall-bound mycolate profile, which impacts mycobacterial adherence properties and in vivo persistence. This study thus provides some experimental clues to the possible physiological role of ethA-ethR and proposes that this locus is a novel factor involved in the modulation of mycobacterial virulence.


Subject(s)
Bacterial Adhesion/physiology , Mycobacterium bovis/genetics , Mycolic Acids/metabolism , Oxidoreductases/metabolism , Repressor Proteins/metabolism , Animals , Cell Line , Cell Wall , Female , Gene Deletion , Gene Expression Regulation, Bacterial/physiology , Humans , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mutation , Mycobacterium bovis/metabolism , Oxidative Stress , Oxidoreductases/genetics , Repressor Proteins/genetics , Specific Pathogen-Free Organisms
12.
Protein Expr Purif ; 100: 33-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24810911

ABSTRACT

Phosphatidylinositol mannosides are essential structural components of the mycobacterial cell envelope. They are implicated in host-pathogen interactions during infection and serve as a basis for biosynthesis of other unique molecules with immunomodulatory properties - mycobacterial lipopolysaccharides lipoarabinomannan and lipomannan. Acyltransferase Rv2611 is involved in one of the initial steps in the assembly of these molecules in Mycobacterium tuberculosis - the attachment of an acyl group to position-6 of the 2-linked mannosyl residue of the phosphatidylinositol mannoside anchor. Although the function of this enzyme was annotated 10 years ago, it has never been completely biochemically characterized due to lack of the pure protein. We have successfully overexpressed and purified MSMEG_2934, the ortholog of Rv2611c from the non-pathogenic model organism Mycobacteriumsmegmatis mc(2)155 using mycobacterial pJAM2 expression system, which allowed confirmation of its in vitro acyltransferase activity, and establishment of its substrate specificity.


Subject(s)
Acyltransferases/metabolism , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium smegmatis/enzymology , Phosphatidylinositols/metabolism , Acylation , Acyltransferases/analysis , Acyltransferases/genetics , Acyltransferases/isolation & purification , Amino Acid Sequence , Cell Wall/chemistry , Cell Wall/metabolism , Chromatography, Affinity , Cloning, Molecular , Escherichia coli/genetics , Humans , Molecular Sequence Data , Mycobacterium smegmatis/chemistry , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/enzymology , Phosphatidylinositols/chemistry , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
13.
J Med Chem ; 67(1): 81-109, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38157261

ABSTRACT

3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure-activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.


Subject(s)
Mycobacterium tuberculosis , Animals , Oxadiazoles/pharmacology , Oxadiazoles/chemistry , Tetrazoles/pharmacology , Tetrazoles/chemistry , Microbial Sensitivity Tests , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Structure-Activity Relationship , Nitroreductases , Mammals
14.
J Biol Chem ; 287(47): 39933-41, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23038254

ABSTRACT

The biosynthesis of the major cell envelope glycoconjugates of Mycobacterium tuberculosis is topologically split across the plasma membrane, yet nothing is known of the transporters required for the translocation of lipid-linked sugar donors and oligosaccharide intermediates from the cytoplasmic to the periplasmic side of the membrane in mycobacteria. One of the mechanisms used by prokaryotes to translocate lipid-linked phosphate sugars across the plasma membrane relies on translocases that share resemblance with small multidrug resistance transporters. The presence of an small multidrug resistance-like gene, Rv3789, located immediately upstream from dprE1/dprE2 responsible for the formation of decaprenyl-monophosphoryl-ß-D-arabinose (DPA) in the genome of M. tuberculosis led us to investigate its potential involvement in the formation of the major arabinosylated glycopolymers, lipoarabinomannan (LAM) and arabinogalactan (AG). Disruption of the ortholog of Rv3789 in Mycobacterium smegmatis resulted in a reduction of the arabinose content of both AG and LAM that accompanied the accumulation of DPA in the mutant cells. Interestingly, AG and LAM synthesis was restored in the mutant not only upon expression of Rv3789 but also upon that of the undecaprenyl phosphate aminoarabinose flippase arnE/F genes from Escherichia coli. A bacterial two-hybrid system further indicated that Rv3789 interacts in vivo with the galactosyltransferase that initiates the elongation of the galactan domain of AG. Biochemical and genetic evidence is thus consistent with Rv3789 belonging to an AG biosynthetic complex, where its role is to reorient DPA to the periplasm, allowing this arabinose donor to then be used in the buildup of the arabinan domains of AG and LAM.


Subject(s)
Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/physiology , Galactans/metabolism , Lipopolysaccharides/metabolism , Membrane Transport Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Arabinose/genetics , Arabinose/metabolism , Bacterial Proteins/genetics , Galactans/genetics , Genetic Complementation Test , Glycosylation , Lipopolysaccharides/genetics , Membrane Transport Proteins/genetics , Mutation , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics
15.
Biomedicines ; 11(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37509615

ABSTRACT

Tuberculosis (TB) is a leading infectious disease with serious antibiotic resistance. The benzothiazinone (BTZ) scaffold PBTZ169 kills Mycobacterium tuberculosis (Mtb) through the inhibition of the essential cell wall enzyme decaprenylphosphoryl-ß-D-ribose 2'-oxidase (DprE1). PBTZ169 shows anti-TB potential in animal models and pilot clinical tests. Although highly potent, the BTZ type DprE1 inhibitors in general show extremely low aqueous solubility, which adversely affects the drug-like properties. To improve the compounds physicochemical properties, we generated a series of BTZ analogues. Several optimized compounds had MIC values against Mtb lower than 0.01 µM. The representative compound 37 displays improved solubility and bioavailability compared to the lead compound. Additionally, compound 37 shows Mtb-killing ability in an acute infection mouse model.

16.
Eur J Med Chem ; 258: 115611, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37421887

ABSTRACT

Phenotypic screening of an in-house library of small molecule purine derivatives against Mycobacterium tuberculosis (Mtb) led to the identification of 2-morpholino-7-(naphthalen-2-ylmethyl)-1,7-dihydro-6H-purin-6-one 10 as a potent antimycobacterial agent with MIC99 of 4 µM. Thorough structure-activity relationship studies revealed the importance of 7-(naphthalen-2-ylmethyl) substitution for antimycobacterial activity, yet opened the possibility of structural modifications at positions 2 and 6 of the purine core. As the result, optimized analogues with 6-amino or ethylamino substitution 56 and 64, respectively, were developed. These compounds showed strong in vitro antimycobacterial activity with MIC of 1 µM against Mtb H37Rv and against several clinically isolated drug-resistant strains, had limited toxicity to mammalian cell lines, medium clearance with respect to phase I metabolic deactivation (27 and 16.8 µL/min/mg), sufficient aqueous solubility (>90 µM) and high plasma stability. Interestingly, investigated purines, including compounds 56 and 64, lacked activity against a panel of Gram-negative and Gram-positive bacterial strains, indicating a specific mycobacterial molecular target. To investigate the mechanism of action, Mtb mutants resistant to hit compound 10 were isolated and their genomes were sequenced. Mutations were found in dprE1 (Rv3790), which encodes decaprenylphosphoryl-ß-d-ribose oxidase DprE1, enzyme essential for the biosynthesis of arabinose, a vital component of the mycobacterial cell wall. Inhibition of DprE1 by 2,6-disubstituted 7-(naphthalen-2-ylmethyl)-7H-purines was proved using radiolabelling experiments in Mtb H37Rv in vitro. Finally, structure-binding relationships between selected purines and DprE1 using molecular modeling studies in tandem with molecular dynamic simulations revealed the key structural features for effective drug-target interaction.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Animals , Antitubercular Agents/chemistry , Alcohol Oxidoreductases/chemistry , Purines/pharmacology , Structure-Activity Relationship , Molecular Dynamics Simulation , Bacterial Proteins/metabolism , Mammals/metabolism
17.
J Am Chem Soc ; 134(2): 912-5, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22188377

ABSTRACT

Benzothiazinones (BTZs) are antituberculosis drug candidates with nanomolar bactericidal activity against tubercle bacilli. Here we demonstrate that BTZs are suicide substrates of the FAD-dependent decaprenylphosphoryl-ß-D-ribofuranose 2'-oxidase DprE1, an enzyme involved in cell-wall biogenesis. BTZs are reduced by DprE1 to an electrophile, which then reacts in a near-quantitative manner with an active-site cysteine of DprE1, thus providing a rationale for the extraordinary potency of BTZs. Mutant DprE1 enzymes from BTZ-resistant strains reduce BTZs to inert metabolites while avoiding covalent inactivation. Our results explain the basis for drug sensitivity and resistance to an exceptionally potent class of antituberculosis agents.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Mycobacterium/enzymology , Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/chemistry , Molecular Structure , Structure-Activity Relationship
18.
J Biol Chem ; 285(53): 41348-55, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21030587

ABSTRACT

The arabinogalactan (AG) of slow growing pathogenic Mycobacterium spp. is characterized by the presence of galactosamine (GalN) modifying some of the interior branched arabinosyl residues. The biosynthetic origin of this substituent and its role(s) in the physiology and/or pathogenicity of mycobacteria are not known. We report on the discovery of a polyprenyl-phospho-N-acetylgalactosaminyl synthase (PpgS) and the glycosyltransferase Rv3779 from Mycobacterium tuberculosis required, respectively, for providing and transferring the GalN substrate for the modification of AG. Disruption of either ppgS (Rv3631) or Rv3779 totally abolished the synthesis of the GalN substituent of AG in M. tuberculosis H37Rv. Conversely, expression of ppgS in Mycobacterium smegmatis conferred upon this species otherwise devoid of ppgS ortholog and any detectable polyprenyl-phospho-N-acetylgalactosaminyl synthase activity the ability to synthesize polyprenyl-phospho-N-acetylgalactosamine (polyprenyl-P-GalNAc) from polyprenyl-P and UDP-GalNAc. Interestingly, this catalytic activity was increased 40-50-fold by co-expressing Rv3632, the encoding gene of a small membrane protein apparently co-transcribed with ppgS in M. tuberculosis H37Rv. The discovery of this novel lipid-linked sugar donor and the involvement of a the glycosyltransferase C-type glycosyltransferase in its transfer onto its final acceptor suggest that pathogenic mycobacteria modify AG on the periplasmic side of the plasma membrane. The availability of a ppgS knock-out mutant of M. tuberculosis provides unique opportunities to investigate the physiological function of the GalN substituent and the potential impact it may have on host-pathogen interactions.


Subject(s)
Galactans/chemistry , Galactosamine/chemistry , Mycobacterium tuberculosis/metabolism , Alleles , Cell Membrane/metabolism , Glycosylation , Lipids/chemistry , Models, Biological , Mutation , Mycobacterium smegmatis/metabolism , Phenotype , Polysaccharides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Mol Microbiol ; 77(5): 1172-85, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20624223

ABSTRACT

Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl-ß-d-ribose 2'-epimerase complex, have been reported recently. Here, we describe the identification and characterization of a novel resistance mechanism to BTZ in Mycobacterium smegmatis. The overexpression of the nitroreductase NfnB leads to the inactivation of the drug by reduction of a critical nitro-group to an amino-group. The direct involvement of NfnB in the inactivation of the lead compound BTZ043 was demonstrated by enzymology, microbiological assays and gene knockout experiments. We also report the crystal structure of NfnB in complex with the essential cofactor flavin mononucleotide, and show that a common amino acid stretch between NfnB and DprE1 is likely to be essential for the interaction with BTZ. We performed docking analysis of NfnB-BTZ in order to understand their interaction and the mechanism of nitroreduction. Although Mycobacterium tuberculosis seems to lack nitroreductases able to inactivate these drugs, our findings are valuable for the design of new BTZ molecules, which may be more effective in vivo.


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/enzymology , Nitroreductases/chemistry , Nitroreductases/metabolism , Thiazines/pharmacology , Antitubercular Agents/metabolism , Crystallography, X-Ray , Gene Knockout Techniques , Microbial Sensitivity Tests , Nitroreductases/genetics , Oxidation-Reduction , Protein Structure, Tertiary , Thiazines/metabolism
20.
Bioconjug Chem ; 22(2): 289-98, 2011 Feb 16.
Article in English | MEDLINE | ID: mdl-21250655

ABSTRACT

The synthesis of conjugates consisting of two or three mannose units interconnected by a 1,2,3-triazole linker installed by the "click" reaction is reported. These conjugates were evaluated in mycobacterial mannosyltransferase (ManT) assay. Detailed analysis of the reaction products showed that these compounds with triazole linker between sugar moieties were tolerated by the enzyme, which elongated them by one or two sugar units with α-(1→6) linkage. The effectiveness of this transfer was reduced in comparison to that observed for the acceptor analogues containing a glycosidic linkage, but still, this is the first report on such unnatural compounds serving as substrates for mycobacterial ManT. The ability of the studied compounds to function as acceptors for the ManT suggests that the relative distance and spatial orientation of acceptor octyl hydrophobic aglycone (optimal length for the ManT) and free primary C-6 hydroxy group of the nonreducing terminal mannose unit (to which glycosyl residue is transferred by the mycobacterial ManT) are important for ManT activity, but at the same time, their variations are tolerated by the enzyme in a relatively wide range.


Subject(s)
Glycoconjugates/chemical synthesis , Mannosyltransferases/metabolism , Mycobacterium smegmatis/enzymology , Oligosaccharides/chemical synthesis , Triazoles/chemical synthesis , Glycoconjugates/chemistry , Mannosyltransferases/chemistry , Molecular Structure , Oligosaccharides/chemistry , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL