Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Appl Clin Med Phys ; 22(3): 35-47, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33475227

ABSTRACT

Recently, VOLO™ was introduced as a new optimizer for CyberKnife® planning. In this study, we investigated possibilities to improve treatment plans for MLC-based prostate SBRT with enhanced peripheral zone dose while sparing the urethra, and central lung tumors, compared to existing Sequential Optimization (SO). The primary focus was on reducing OAR doses. For 25 prostate and 25 lung patients treated with SO plans, replanning with VOLO™ was performed with the same planning constraints. For equal PTV coverage, almost all OAR plan parameters were improved with VOLO™. For prostate patients, mean rectum and bladder doses were reduced by 34.2% (P < 0.001) and 23.5% (P < 0.001), with reductions in D0.03cc of 3.9%, 11.0% and 3.1% for rectum, mucosa and bladder (all P ≤ 0.01). Urethra D5% and D10% were 3.8% and 3.0% lower (P ≤ 0.002). For lung patients, esophagus, main bronchus, trachea, and spinal cord D0.03cc was reduced by 18.9%, 11.1%, 16.1%, and 13.2%, respectively (all P ≤ 0.01). Apart from the dosimetric advantages of VOLO™ planning, average reductions in MU, numbers of beams and nodes for prostate/lung were 48.7/32.8%, 26.5/7.9% and 13.4/7.9%, respectively (P ≤ 0.003). VOLO™ also resulted in reduced delivery times with mean/max reductions of: 27/43% (prostate) and 15/41% (lung), P  < 0.001. Planning times reduced from 6 h to 1.1 h and from 3 h to 1.7 h for prostate and lung, respectively. The new VOLO™ planning was highly superior to SO planning in terms of dosimetric plan quality, and planning and delivery times.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Robotic Surgical Procedures , Humans , Male , Organs at Risk , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
2.
J Appl Clin Med Phys ; 21(11): 304-311, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33103343

ABSTRACT

PURPOSE: To report on the commissioning and clinical validation of the first commercially available independent Monte Carlo (MC) three-dimensional (3D) dose calculation for CyberKnife robotic radiosurgery system® (Accuray, Sunnyvale, CA). METHODS: The independent dose calculation (IDC) by SciMoCa® (Scientific RT, Munich, Germany) was validated based on water measurements of output factors and dose profiles (unshielded diode, field-size dependent corrections). A set of 84 patient-specific quality assurance (QA) measurements for multi-leaf collimator (MLC) plans, using an Octavius two-dimensional SRS1000 array (PTW, Freiburg, Germany), was compared to results of respective calculations. Statistical process control (SPC) was used to detect plans outside action levels. RESULTS: Of all output factors for the three collimator systems of the CyberKnife, 99% agreed within 2% and 81% within 1%, with a maximum deviation of 3.2% for a 5-mm fixed cone. The profiles were compared using a one-dimensional gamma evaluation with 2% dose difference and 0.5 mm distance-to-agreement (Γ(2,0.5)). The off-centre ratios showed an average pass rate >99% (92-100%). The agreement of the depth dose profiles depended on field size, with lowest pass rates for the smallest MLC field sizes. The average depth dose pass rate was 88% (35-99%). The IDCs showed a Γ(2,1) pass rate of 98%. Statistical process control detected six plans outside tolerance levels in the measurements, all of which could be attributed the measurement setup. Independent dose calculations showed problems in five plans, all due to differences in the algorithm between TPS and IDC. Based on these results changes were made in the class solution for treatment plans. CONCLUSION: The first commercially available MC 3D dose IDC was successfully commissioned and validated for the CyberKnife and replaced all routine patient-specific QA measurements in our clinic.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage
3.
Strahlenther Onkol ; 194(9): 843-854, 2018 09.
Article in English | MEDLINE | ID: mdl-29802435

ABSTRACT

PURPOSE: To investigate the quality of treatment plans of spinal radiosurgery derived from different planning and delivery systems. The comparisons include robotic delivery and intensity modulated arc therapy (IMAT) approaches. Multiple centers with equal systems were used to reduce a bias based on individual's planning abilities. The study used a series of three complex spine lesions to maximize the difference in plan quality among the various approaches. METHODS: Internationally recognized experts in the field of treatment planning and spinal radiosurgery from 12 centers with various treatment planning systems participated. For a complex spinal lesion, the results were compared against a previously published benchmark plan derived for CyberKnife radiosurgery (CKRS) using circular cones only. For two additional cases, one with multiple small lesions infiltrating three vertebrae and a single vertebra lesion treated with integrated boost, the results were compared against a benchmark plan generated using a best practice guideline for CKRS. All plans were rated based on a previously established ranking system. RESULTS: All 12 centers could reach equality (n = 4) or outperform (n = 8) the benchmark plan. For the multiple lesions and the single vertebra lesion plan only 5 and 3 of the 12 centers, respectively, reached equality or outperformed the best practice benchmark plan. However, the absolute differences in target and critical structure dosimetry were small and strongly planner-dependent rather than system-dependent. Overall, gantry-based IMAT with simple planning techniques (two coplanar arcs) produced faster treatments and significantly outperformed static gantry intensity modulated radiation therapy (IMRT) and multileaf collimator (MLC) or non-MLC CKRS treatment plan quality regardless of the system (mean rank out of 4 was 1.2 vs. 3.1, p = 0.002). CONCLUSIONS: High plan quality for complex spinal radiosurgery was achieved among all systems and all participating centers in this planning challenge. This study concludes that simple IMAT techniques can generate significantly better plan quality compared to previous established CKRS benchmarks.


Subject(s)
Benchmarking , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Spinal Neoplasms , Thoracic Vertebrae , Aged , Algorithms , Dose Fractionation, Radiation , Humans , Neoplasm Recurrence, Local/radiotherapy , Organs at Risk , Radiosurgery/instrumentation , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation , Re-Irradiation , Robotic Surgical Procedures/instrumentation , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary , Thoracic Vertebrae/surgery
4.
Front Oncol ; 13: 1114737, 2023.
Article in English | MEDLINE | ID: mdl-36969072

ABSTRACT

Using fiducial-marker-based robotic respiratory tumor tracking, we treated perihilar cholangiocarcinoma patients in the STRONG trial with 15 daily fractions of 4 Gy. For each of the included patients, in-room diagnostic-quality repeat CTs (rCT) were acquired pre- and post-dose delivery in 6 treatment fractions to analyze inter- and intrafraction dose variations. Planning CTs (pCTs) and rCTs were acquired in expiration breath-hold. Analogous to treatment, spine and fiducials were used to register rCTs with pCTs. In each rCT, all OARs were contoured, and the target was rigidly copied from the pCT based on grey values. The rCTs acquired were used to calculate the doses to be delivered through the treatment-unit settings. On average, target doses in rCTs and pCTs were similar. However, due to target displacements relative to the fiducials in rCTs, 10% of the rCTs showed PTV coverage losses of >10%. Although target coverages had been planned below desired values in order to protect OARs, many pre-rCTs contained OAR constraint violations: 44.4% for the 6 major constraints. Most OAR dose differences between pre- and post-rCTs were not statistically significant. The dose deviations observed in repeat CTs represent opportunities for more advanced adaptive approaches to enhancing SBRT treatment quality.

5.
Front Oncol ; 12: 910792, 2022.
Article in English | MEDLINE | ID: mdl-35756687

ABSTRACT

Purpose: To determine the dosimetric impact of using unedited autocontours in daily plan adaptation of patients with locally advanced pancreatic cancer (LAPC) treated with stereotactic body radiotherapy using tumor tracking. Materials and Methods: The study included 98 daily CT scans of 35 LAPC patients. All scans were manually contoured (MAN), and included the PTV and main organs-at-risk (OAR): stomach, duodenum and bowel. Precision and MIM deformable image registration (DIR) methods followed by contour propagation were used to generate autocontour sets on the daily CT scans. Autocontours remained unedited, and were compared to MAN on the whole organs and at 3, 1 and 0.5 cm from the PTV. Manual and autocontoured OAR were used to generate daily plans using the VOLO™ optimizer, and were compared to non-adapted plans. Resulting planned doses were compared based on PTV coverage and OAR dose-constraints. Results: Overall, both algorithms reported a high agreement between unclipped MAN and autocontours, but showed worse results when being evaluated on the clipped structures at 1 cm and 0.5 cm from the PTV. Replanning with unedited autocontours resulted in better OAR sparing than non-adapted plans for 95% and 84% plans optimized using Precision and MIM autocontours, respectively, and obeyed OAR constraints in 64% and 56% of replans. Conclusion: For the majority of fractions, manual correction of autocontours could be avoided or be limited to the region closest to the PTV. This practice could further reduce the overall timings of adaptive radiotherapy workflows for patients with LAPC.

6.
Radiother Oncol ; 169: 15-24, 2022 04.
Article in English | MEDLINE | ID: mdl-35157975

ABSTRACT

A review of studies on seminal vesicle motion was performed to improve the understanding of these treatment uncertainties. This will aid planning target volume margin reduction, which is necessary for hypofractionation of high-risk prostate cancer. Embase, Medline, Web of science Core collection, Cochrane CENTRAL register of trials and Google scholar were searched for publications including 3D information on seminal vesicle motion. In total 646 publications were found of which 22 publications were eligible for inclusion. The mean, systematic and random error of inter- and intra-fraction translations are reported, as well as rotations. The translations of the seminal vesicles is smallest in the left-right direction, whereas the rotation was largest around this axis. Although rectal and bladder filling status were the main cause for seminal vesicle motion, no apparent effect on magnitude of motion was seen when different bladder and rectal preparation protocols were used. Inter- and intra-fraction motion of the seminal vesicles is significant. In the studies, systematic and random errors range between 1-7 mm and 1-5 mm respectively, and are largely uncorrelated to prostate motion. The maximum correlation between seminal vesicle and prostate motion was reported with an R2 of 0.7, while 3 other studies report lower and/or non-significant correlations. Five studies report a planning target volume margin of approximately 8 mm. This margin is in line with the results of four relevant dosimetric studies. Mitigating the inter- and intra-fraction motion of the seminal vesicles, including prostate tracking, has the potential to reduce planning target volume margins.


Subject(s)
Prostatic Neoplasms , Seminal Vesicles , Humans , Male , Motion , Prostate , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed
7.
Phys Imaging Radiat Oncol ; 23: 103-108, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35928600

ABSTRACT

Background and purpose: Stereotactic body radiotherapy (SBRT) has been proven to be beneficial for several disease sites in the (lower) abdomen. However, the quality of the treatment plan, based on a single planning computed tomography (CT), can be compromised due to large inter-fraction motion of the target and organs at risk (OARs) in this anatomical region. The aim of this study was to investigate the feasibility of online adaptive SBRT treatments on a robotic radiosurgery system and to record estimated total treatment times. Materials and methods: For two disease sites, locally advanced pancreatic cancer (LAPC) and oligometastatic lymph nodes, four patients with repeat CTs were included in the feasibility study. Quick treatment plan templates were generated based on the planning CT and validated by running them on the plan and fraction CTs. For two cases a dummy run was performed and the individual steps were timed. Dose delivery was the largest contributor to the total treatment time, followed by contour adaptation. Results: Running the quick plan templates resulted in plans similar to unrestricted plans, obeying the OAR constraints. The dummy runs showed that online adaptive treatments were completed in 64 to 83 min respectively for oligometastases and LAPC, comparable to other clinically available solutions. Conclusions: This study showed the feasibility of online re-planning for two challenging disease sites within a clinically acceptable time frame on a robotic radiosurgery system, making use of commercially available elements that are not integrated by the vendor.

8.
Int J Radiat Oncol Biol Phys ; 111(1): 208-219, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33811976

ABSTRACT

PURPOSE: To study the trade-offs of three online strategies to adapt treatment plans of patients with locally advanced pancreatic carcinoma (LAPC) treated using the CyberKnife with tumor tracking. METHODS AND MATERIALS: A total of 35 planning computed tomography scans and 98 daily in-room computed tomography scans were collected from 35 patients with LAPC. Planned dose distributions, optimized with VOLO, were evaluated on manually contoured daily anatomies to collect daily doses. Three strategies were tested to adapt treatment plans: (1) unrestricted full replanning using a patient-specific plan template, (2) time-restricted replanning on organs at risk (OARs) within 3 cm from the planning target volume (PTV) structure, and (3) dose realignment optimization to stay within OAR constraints. Dose distributions resulting from each plan adaptation strategy were dosimetrically compared by means of gross tumor volume (GTV), PTV coverage, and OAR tolerances. RESULTS: Planned doses did not result in dose-constraint violations for 28 of 98 daily anatomies. None of the suggested plan adaptation strategies improved planned doses significantly for this subset. For 70 of the 98 reported violations, the median (interquartile range) PTV coverage of the planned dose was 84% (76% to 86%). After plan adaptation, unrestricted replanning achieved clinically acceptable plans in 93% of these fractions, time-restricted replanning in 90%, and dose realignment in 74%, at median computational times of 8.5, 3, and 0.5 minutes. Over all 98 fractions, PTV coverage was reduced: -1% (-3% to 1%), -2% (-5% to 0%), and -2% (-8% to 0%) after each strategy, respectively. In 3 of 70 fractions, none of the suggested strategies achieved clinically acceptable OAR dose volumes. CONCLUSIONS: Unrestricted replanning was the most time-consuming method but reached the highest number of successfully adapted plans. Time-restricted replanning and dose realignment resulted in a high number of plans within dose constraints. Depending on the resources available, an adaptive strategy can be selected for each patient to address the specific anatomic challenges on the treatment day. The increase in the complexity of the strategy corresponds with an increasing number of successfully adapted plans.


Subject(s)
Pancreatic Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Organs at Risk , Radiotherapy Dosage
9.
Cancers (Basel) ; 13(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34439146

ABSTRACT

BACKGROUND: In unresectable pCCA, the standard of care is palliative chemotherapy. We investigated the feasibility and safety of adding stereotactic body radiation therapy (SBRT) after chemotherapy. METHODS: Patients with unresectable pCCA, stage T1-T4N0-N1M0, ECOG 0-1, having finished 6-8 cycles of cisplatin and gemcitabine without disease progression were eligible. SBRT was planned in 15 fractions of 3.0-4.5 Gy. The primary endpoints were feasibility (defined as completing SBRT as planned) and toxicity, evaluated within 3 months after SBRT (CTCAE v4.03). A conventional "3 + 3" design was used, corresponding to a sample size of 6 patients. Dose-limiting toxicity (DLT) was defined as grade ≥ 4 hepatobiliary or grade ≥ 3 gastrointestinal toxicity. The secondary endpoints, measured from the start of radiotherapy, were local control, progression-free survival, overall survival, and quality of life (QoL). ClinicalTrials.gov identifier: NCT03307538. RESULTS: Six patients were enrolled between November 2017 and March 2020. SBRT was delivered as planned. All patients were treated with 60Gy (15 × 4.0Gy). No SBRT-related DLT was observed. The most common grade ≥ 3 toxicity was cholangitis (n = 5). The median follow-up was 14 months. The 12-month local control rate was 80%. We observed no substantial changes in QoL. CONCLUSION: In patients with unresectable pCCA with stable disease after palliative chemotherapy, adding SBRT is feasible and safe. The observed local control merits an additional evaluation of effectiveness.

10.
Photosynth Res ; 104(2-3): 257-74, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20229036

ABSTRACT

We review the optical properties of the FMO complex as found by spectroscopic studies of the Q ( y ) band over the last two decades. This article emphasizes the different methods used, both experimental and theoretical, to elucidate the excitonic structure and dynamics of this pigment-protein complex.


Subject(s)
Bacterial Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Optical Phenomena , Bacteriochlorophyll A/chemistry , Photons , Spectrum Analysis , Thermodynamics
11.
Radiother Oncol ; 142: 217-223, 2020 01.
Article in English | MEDLINE | ID: mdl-31767472

ABSTRACT

BACKGROUND AND PURPOSE: In 2017 the ACROP guideline on SBRT for peripherally located early stage NSCLC was published. Later that year ICRU-91 about prescribing, recording and reporting was published. The purpose of this study is to quantify the current variation in prescription practice in the institutions that contributed to the ACROP guideline and to establish the link between the ACROP and ICRU-91 recommendations. MATERIAL AND METHODS: From each of the eight participating centres, 15 SBRT plans for stage I NSCLC were analyzed. Plans were generated following the institutional protocol, centres prescribed 3 × 13.5 Gy, 3 × 15 Gy, 3 × 17 Gy or 3 × 18 Gy. Dose parameters of the target volumes were reported as recommended by ICRU-91 and also converted to BED10Gy. RESULTS: The intra-institutional variance in D98%, Dmean and D2% of the PTV and GTV/ITV is substantially smaller than the inter-institutional spread, indicating well protocollised planning procedures are followed. The median values per centre ranged from 56.1 Gy to 73.1 Gy (D2%), 50.4 Gy to 63.3 Gy (Dmean) and 40.5 Gy to 53.6 Gy (D98%) for the PTV and from 57.1 Gy to 73.6 Gy (D2%), 53.7 Gy to 68.7 Gy (Dmean) and 48.5 Gy to 62.3 Gy (D98%) for the GTV/ITV. Comparing the variance in PTV D98% with the variance in GTV Dmean per centre, using an F-test, shows that four centres have a larger variance in GTV Dmean, while one centre has a larger variance in PTV D98% (p values <0.01). This shows some centres focus on achieving a constant PTV coverage while others aim at a constant GTV coverage. CONCLUSION: More detailed recommendations for dose planning and reporting of lung SBRT in line with ICRU-91 were formulated, including a minimum PTV D98% of 100 Gy BED10Gy and minimum GTV/ITV mean dose of 150 Gy BED10Gy and a D2% in the range of 60-70 Gy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiosurgery/standards , Radiotherapy Planning, Computer-Assisted/standards , Guideline Adherence , Humans , Practice Guidelines as Topic , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
12.
J Phys Chem A ; 113(27): 7717-24, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19507814

ABSTRACT

Diarylethenes with two different side groups (phenyl and chloro) were appended to both alpha-ends of a sexithiophene unit. The temperature dependent aggregation properties for both compounds were characterized by steady state and transient absorption spectroscopy. The peripheral side groups show an unexpectedly significant influence on the electronic properties of the sexithiophene core. Furthermore, the relative influence of the phenyl and chloro substituents on the aggregation behavior observed is remarkable. The phenyl compound exhibits formation of H-aggregates over a narrow temperature range, between 240 and 200 K, typical of strong intermolecular interactions. In contrast, the chloro compound shows gradual aggregation over a wide temperature range, forming H-aggregates albeit with weaker intermolecular interactions. The results demonstrate that minor changes in the structure lead to tunability of the aggregation and corresponding luminescence properties of sexithiophenes in solution and hold particular relevance to supramolecular and polymer systems based on sexithiophene units.

13.
PLoS One ; 14(2): e0210279, 2019.
Article in English | MEDLINE | ID: mdl-30726214

ABSTRACT

OBJECT: To explore the use of automated planning in robotic radiosurgery of benign vestibular schwannoma (VS) tumors for dose reduction outside the planning target volume (PTV) to potentially reduce risk of secondary tumor induction. METHODS: A system for automated planning (AUTOplans) for VS patients was set up. The goal of AUTO- planning was to reduce the dose bath, including the occurrence of high dose spikes leaking from the PTV into normal tissues, without worsening PTV coverage, OAR doses, or treatment time. For 20 VS patients treated with 1x12 Gy, the AUTOplan was compared with the plan generated with conventional, manual trial-and-error planning (MANplan). RESULTS: With equal PTV coverage, AUTOplans showed clinically negligible differences with MANplans in OAR sparing (largest mean difference for all OARs: ΔD2% = 0.2 Gy). AUTOplan dose distributions were more compact: mean/maximum reductions of 23.6/53.8% and 9.6/28.5% in patient volumes receiving more than 1 or 6 Gy, respectively (p<0.001). AUTOplans also showed smaller dose spikes with mean/maximum reductions of 22.8/37.2% and 14.2/40.4% in D2% for shells at 1 and 7 cm distance from the PTV, respectively (p<0.001). CONCLUSION: Automated planning for benign VS tumors highly outperformed manual planning with respect to the dose bath outside the PTV, without deteriorating PTV coverage or OAR sparing, or significantly increasing treatment time.


Subject(s)
Algorithms , Neuroma, Acoustic , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted , Robotic Surgical Procedures/methods , Tomography, X-Ray Computed , Female , Humans , Male , Neuroma, Acoustic/diagnostic imaging , Neuroma, Acoustic/surgery
14.
Radiother Oncol ; 141: 116-122, 2019 12.
Article in English | MEDLINE | ID: mdl-31606227

ABSTRACT

PURPOSE: Locally advanced pancreatic cancer (LAPC) patients are prone to experience daily anatomical variations, which can lead to additional doses in organs-at-risk (OAR) during SBRT. A patient selection tool was developed to identify who may be at risk of exceeding dose tolerances, by quantifying the dosimetric impact of daily variations using an OAR motion model. MATERIALS AND METHODS: The study included 133 CT scans from 35 LAPC patients. By following a leave-one-out approach, an OAR motion model trained with the remaining 34 subjects variations was used to simulate organ deformations on the left-out patient planning CT anatomy. Dose-volume histograms obtained from planned doses sampled on simulated organs resulted in the probability of exceeding OAR dose-constraints due to anatomical variations. Simulated probabilities were clustered with a threshold per organ according to clinical observations. If the prediction of at least one OAR was above the established thresholds, the patient was classified as being at risk. RESULTS: Clinically, in 20/35 patients at least one OAR exceeded dose-constraints in the daily CTs. The model-based prediction had an accuracy of 89%, 71%, 91% in estimating the risk of exceeding dose tolerances for the duodenum, stomach and bowel, respectively. By combining the three predictions, our approach resulted in a correct patient classification for 29/35 patients (83%) when compared with clinical observations. CONCLUSIONS: Our model-based patient selection tool is able to predict who might be at risk of exceeding dose-constraints during SBRT. It is a promising tool to tailor LAPC treatments, e.g. by employing online adaptive SBRT; and hence, to minimize toxicity of patients being at risk.


Subject(s)
Models, Anatomic , Pancreatic Neoplasms/radiotherapy , Patient Selection , Radiation Injuries/prevention & control , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Humans , Organs at Risk , Pancreas/anatomy & histology , Pancreas/diagnostic imaging , Radiotherapy Dosage , Risk Assessment
15.
Radiother Oncol ; 134: 127-134, 2019 05.
Article in English | MEDLINE | ID: mdl-31005206

ABSTRACT

PURPOSE: To characterize daily geometrical variations of gastrointestinal organs with respect to pancreatic tumors, through a population-based statistical model. MATERIALS AND METHODS: The study included 131 CT scans from 35 pancreatic cancer patients treated with Stereotactic Body Radiotherapy (SBRT). For each patient, day-to-day anatomical variations of the stomach, the duodenum and the bowel were assessed from the deformation vector fields (DVF) obtained by non-rigidly registering the contours of the fractions to the planning CT scans. For the whole population, day-to-day motion-deformation patterns were abstracted using principal component analysis (PCA) on the set of DVFs mapped on a reference patient. Based on these geometrical variations, anatomies were generated to create population-based dose-volume histograms (DVH) per patient, which were also compared to clinical values. RESULTS: Through PCA, the most dominant directions of daily deformations were localized in the abdominal organs. Common patterns were found, such as stomach contraction-expansion in the anterior-posterior direction ranging from 5 to 13 mm, and superior-inferior deformations on the bowel from 7 to 14 mm. The duodenum resulted to move laterally, but in a lesser extent (4-8 mm). The population-based DVHs derived from the model mostly included the daily DVHs observed in the clinic (in >90% of the cases). CONCLUSIONS: Anatomical variations influence the delivered doses to healthy organs during SBRT. A motion model was successfully built and explored to extract the larger directions of movement of the gastrointestinal organs. Day-to-day motion modeling can potentially be used to account for geometrical uncertainties in future plan optimization and in online adaptive strategies.


Subject(s)
Organs at Risk , Pancreatic Neoplasms/radiotherapy , Radiosurgery/methods , Cohort Studies , Humans , Principal Component Analysis , Radiotherapy Planning, Computer-Assisted/methods
16.
Radiother Oncol ; 128(2): 343-348, 2018 08.
Article in English | MEDLINE | ID: mdl-29970259

ABSTRACT

BACKGROUND AND PURPOSE: Reported plan quality improvements with autoplanning of radiotherapy of the prostate and seminal vesicles are poor. A system for automated multi-criterial planning has been validated for this treatment in a large international multi-center study. The system is configured with training plans using a mechanism that strives for quality improvements relative to those plans. MATERIAL AND METHODS: Each of the four participating centers included thirty manually generated clinical Volumetric Modulated Arc Therapy prostate plans (manVMAT). Ten plans were used for autoplanning training. The other twenty were compared with an automatically generated plan (autoVMAT). Plan evaluations considered dosimetric plan parameters and blinded side-by-side plan comparisons by clinicians. RESULTS: With equivalent Planning Target Volume (PTV) V95%, D2%, D98%, and dose homogeneity autoVMAT was overall superior for rectum with median differences of 3.4 Gy (p < 0.001) in Dmean, 4.0% (p < 0.001) in V60Gy, and 1.5% (p = 0.001) in V75Gy, and for bladder Dmean (0.9 Gy, p < 0.001). Also the clinicians' plan comparisons pointed at an overall preference for autoVMAT. Advantages of autoVMAT were highly treatment center- and patient-specific with overall ranges for differences in rectum Dmean and V60Gy of [-4,12] Gy and [-2,15]%, respectively. CONCLUSION: Observed advantages of autoplanning were clinically relevant and larger than reported in the literature. The latter is likely related to the multi-criterial nature of the applied autoplanning algorithm, with for each center a dedicated configuration that aims at plan improvements relative to its (clinical) training plans. Large variations among patients in differences between manVMAT and autoVMAT point at inconsistencies in manual planning.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Aged , Algorithms , Humans , Male , Middle Aged , Organs at Risk , Quality of Health Care , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards , Rectum/radiation effects , Seminal Vesicles/radiation effects , Urinary Bladder/radiation effects
17.
Med Phys ; 44(9): 4816-4827, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28657157

ABSTRACT

PURPOSE: This article reports on the integration of a sliding-gantry CT-on-rails with a robotic linear accelerator. METHODS: The system consists of a SOMATOM Definition AS CT scanner (Siemens Healthcare, Forchheim, Germany) and a CyberKnife M6 FIM (Accuray, Inc., Sunnyvale, CA, USA). Additional movement programs were implemented in the robotic treatment table (RoboCouch, Accuray Inc.) to move between CT and treatment position. Acceptance testing was performed on the CT scanner according to AAPM83 guidelines, as well as safety tests for collision avoidance and electromagnetic (EM) compatibility. For the first clinical application of the system, daily dose was evaluated in five pancreas SBRT patients. A second envisioned use is the optimal alignment of the treatment beams to soft-tissue targets without the use of implanted fiducials. To this end, an offset vector feature has been implemented, which shifts the treatment center according to the daily position of the tumor relative to the spine (established by a CT scan). This offset can be applied by either moving the treatment couch (physical couch shift) or by moving the CyberKnife robot (virtual couch shift). An End-to-End (E2E) test was specifically designed to evaluate the accuracy of this feature using the Xsight Lung Tracking Phantom (Computerized Imaging Reference Systems, Inc., Norfolk, VA, USA). The position of the tumor with respect to the spine was varied by moving the insert inside the phantom and a CT scan was made for each position. The treatment plan was subsequently delivered to the phantom employing spine tracking. The test was repeated four times for a physical couch shift and four times for a virtual couch shift. RESULTS: All acceptance, safety and EM compatibility testing was successful. For the first pancreas SBRT patients treated using daily CT imaging, the volume of stomach, duodenum, or small bowel receiving >35 Gy was found to increase or remain constant during treatment; however, the clinical constraint of 5 cc was not violated. For the offset vector E2E test, the reference accuracy (without any tumor shift) was (0.74, -0.61, -0.33) mm in the inferior, left, and anterior direction respectively. The difference in deviation with respect to the reference was (-0.1 ± 0.15, 0.01 ± 0.16, -0.17 ± 0.25) mm, when applying a physical couch shift. With a virtual couch shift, the deviations were (0.02 ± 0.15, 0.06 ± 0.23, -0.4 ± 0.31) mm. CONCLUSIONS: The first combination of a CyberKnife treatment unit with a sliding-gantry CT scanner is operational in our department enabling future developments toward image-guided online-adaptive SBRT supported by diagnostic-quality CT imaging.


Subject(s)
Particle Accelerators , Radiosurgery , Robotics , Germany , Humans , Phantoms, Imaging , Tomography, X-Ray Computed
18.
Org Lett ; 11(3): 721-4, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19140721

ABSTRACT

Photochromic sexithiophenes were prepared by oxidative electrochemical coupling of terthiophenes. The redox properties in the open state are typical of sexithiophenes. Ring closure of both photochromic units leads to a decrease in the energy of the LUMO orbitals with little affect on the energy of the HOMO orbitals. The photochemical tuning of the conjugation of a molecular wire is achieved by combining dithienylethene units with a sexithiophene.

SELECTION OF CITATIONS
SEARCH DETAIL