Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Chem Phys ; 160(20)2024 May 28.
Article in English | MEDLINE | ID: mdl-38818896

ABSTRACT

Perovskite solar cells have demonstrated exceptional development over the past decade, but their stability remains a challenge toward the application of this technology. Several strategies have been used to address this, and the use of host-guest complexation has recently attracted more interest. However, this approach has primarily been exploited in conventional perovskite solar cells based on n-i-p architectures, while its use in inverted p-i-n devices remains unexplored. Herein, we employ representative crown ether, dibenzo-24-crown-8, for interfacial host-guest complexation in inverted perovskite solar cells based on methylammonium and methylammonium-free formamidinium-cesium halide perovskite compositions. Upon post-treatment of the perovskite films, we observed nanostructures on the surface that were associated with the reduced amount of trap states at the interface with the electron transport layer. As a result, we demonstrate improved efficiencies and operational stabilities following ISOS-D-2I and ISOS-L-2I protocols, demonstrating the viability of this approach to advance device stability.

2.
Chimia (Aarau) ; 78(6): 369-371, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38946407

ABSTRACT

The UN Sustainable Development Goals (SDGs) provide a framework for addressing some of the most pressing global challenges, from rising inequalities to economic growth and environmental impact. Chemistry is relevant to these issues and this Editorial reviews the contributions in the chemistry community in Switzerland.

3.
Angew Chem Int Ed Engl ; 62(34): e202217841, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37377145

ABSTRACT

Pressing global challenges, such as climate change, the COVID-19 pandemic, or antibiotic resistance, require coordinated international responses guided by evidence-informed decisions. For this purpose, it is critical that scientists engage in providing insights during the decision-making process. However, the mechanisms for the engagement of scientists in policy-making are complex and vary internationally, which often poses significant challenges to their involvement. Herein, we address some of the mechanisms and barriers for scientists to engage in policy-making with a global perspective by early-career scientists. We highlight the importance of scientific academies, societies, universities, and early-career networks as stakeholders and how they can adapt their structures to actively contribute to shaping global policies, with representative examples from chemistry-related disciplines. We showcase the importance of raising awareness, providing resources and training, and leading discussions about connecting emerging scientists with global decision-makers to address societal challenges through policies.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Policy Making , Policy
4.
Small ; 18(5): e2104287, 2022 02.
Article in English | MEDLINE | ID: mdl-34816572

ABSTRACT

Dion-Jacobson (DJ) iodoplumbates based on 1,4-phenylenedimethanammonium (PDMA) have recently emerged as promising light absorbers for perovskite solar cells. While PDMA is one of the simplest aromatic spacers potentially capable of forming a DJ structure based on (PDMA)An-1 Pbn I3n+1 composition, the crystallographic proof has not been reported so far. Single crystal structure of a DJ phase based on PDMA is presented and high-field solid-state NMR spectroscopy is used to characterize the structure of PDMA-based iodoplumbates prepared as thin films and bulk microcrystalline powders. It is shown that their atomic-level structure does not depend on the method of synthesis and that it is ordered and similar for all iodoplumbate homologues. Moreover, the presence of lower (n) homologues in thin films is identified through UV-Vis spectroscopy, photoluminescence spectroscopy, and X-ray diffraction measurements, complemented by cathodoluminescence mapping. A closer look using cathodoluminescence shows that the micron-scale microstructure corresponds to a mixture of different layered homologues that are well distributed throughout the film and the presence of layer edge states which dominate the emission. This work therefore determines the formation of DJ phases based on PDMA as the spacer cation and reveals their properties on a multi-length scale, which is relevant for their application in optoelectronics.


Subject(s)
Calcium Compounds , Oxides , Powders , Titanium
5.
Acc Chem Res ; 54(12): 2729-2740, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34085817

ABSTRACT

ConspectusHybrid halide perovskite materials have become one of the leading candidates for various optoelectronic applications. They are based on organic-inorganic structures defined by the AMX3 composition, were A is the central cation that can be either organic (e.g., methylammonium, formamidinium (FA)) or inorganic (e.g., Cs+), M is a divalent metal ion (e.g., Pb2+ or Sn2+), and X is a halide anion (I-, Br-, or Cl-). In particular, FAPbI3 perovskites have shown remarkable optoelectronic properties and thermal stabilities. However, the photoactive α-FAPbI3 (black) perovskite phase is not thermodynamically stable at ambient temperature and forms the δ-FAPbI3 (yellow) phase that is not suitable for optoelectronic applications. This has stimulated intense research efforts to stabilize and realize the potential of the α-FAPbI3 perovskite phase. In addition, hybrid perovskites were proven to be unstable against the external environmental conditions (air and moisture) and under device operating conditions (voltage and light), which is related to various degradation mechanisms. One of the strategies to overcome these instabilities has been based on low-dimensional hybrid perovskite materials, in particular layered two-dimensional (2D) perovskite phases composed of organic layers separating hybrid perovskite slabs, which were found to be more stable toward ambient conditions and ion migration. These materials are mostly based on SxAn-1PbnX3n+1 composition with various mono- (x = 1) or bifunctional (x = 2) organic spacer cations that template hybrid perovskite slabs and commonly form either Ruddlesden-Popper (RP) or Dion-Jacobson (DJ) phases. These materials behave as natural quantum wells since charge carriers are confined to the inorganic slabs, featuring a gradual decrease in the band gap as the number of inorganic layers (n) increases from n = 1 (2D) to n = ∞ (3D). While various layered 2D perovskites have been developed, their FA-based analogues remain under-represented to date. Over the past few years, several research advances enabled the realization of FA-based layered perovskites, which have also demonstrated a unique templating effect in stabilizing the α-FAPbI3 phase. This, for instance, involved the archetypical n-butylammonium and 2-phenylethylammonium organic spacers as well as guanidinium, 5-ammonium valeric acid, iso-butylammonium, benzylammonium, n-pentylammonium, 2-thiophenemethylammonium, 2-(perfluorophenyl)ethylammonium, 1-adamantylmethanammonium, and 1,4-phenylenedimethanammonium. FAPbBr3-based layered perovskites have also demonstrated potential in various optoelectronic applications, yet the opportunities associated with FAPbI3-based perovskites have attracted particular attention in photovoltaics, stimulating further developments. This Account provides an overview of some of these recent developments, with a particular focus on FAPbI3-based layered perovskites and their utility in photovoltaics, while outlining challenges and opportunities for these hybrid materials in the future.

6.
Chimia (Aarau) ; 76(9): 784-791, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-38069707

ABSTRACT

Solar-to-electric energy conversion has provided one of the most powerful renewable energy technologies. In particular, hybrid organic-inorganic halide perovskites have recently emerged as leading thin-film semiconductors for new generation photovoltaics. However, their instability under operating conditions remains an obstacle to their application. To address this, we relied on supramolecular engineering in the development of organic systems that can interact with the surface of hybrid perovskites through different noncovalent interactions and enhance their operational stabilities. Moreover, we have utilized the uniquely soft yet crystalline structure of hybrid perovskites and their mixed ionic-electronic conductivity to provide a platform for advancing their functionality beyond photovoltaics. This account reviews our recent progress in supramolecular engineering of hybrid perovskites in photovoltaics and discusses their perspectives in the development of smart technologies.

7.
Angew Chem Int Ed Engl ; 61(25): e202201063, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35532159

ABSTRACT

During the global crisis triggered by the COVID-19 pandemic, university programs, meetings, and conferences have moved to virtual settings, with consequent erosion of mentorship opportunities for students and early-career professionals. This calls for mentorship platforms that are adapted to the new landscape in order to bring about a positive change. Our Viewpoint Article shares the perspective of the Transformative Education program and Mentorship Talks initiative at the American University of Beirut in Lebanon, with the aim of providing insights that could stimulate other mentorship platforms.


Subject(s)
COVID-19 , Mentoring , Humans , Mentors , Pandemics , United States
8.
J Am Chem Soc ; 143(3): 1529-1538, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33442979

ABSTRACT

The use of layered perovskites is an important strategy to improve the stability of hybrid perovskite materials and their optoelectronic devices. However, tailoring their properties requires accurate structure determination at the atomic scale, which is a challenge for conventional diffraction-based techniques. We demonstrate the use of nuclear magnetic resonance (NMR) crystallography in determining the structure of layered hybrid perovskites for a mixed-spacer model composed of 2-phenylethylammonium (PEA+) and 2-(perfluorophenyl)ethylammonium (FEA+) moieties, revealing nanoscale phase segregation. Moreover, we illustrate the application of this structure in perovskite solar cells with power conversion efficiencies that exceed 21%, accompanied by enhanced operational stability.

9.
Chemistry ; 27(21): 6359-6366, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33704835

ABSTRACT

Global societal challenges emphasize the importance of collaboration between scientists and policy-makers, while the participation of a diverse group of professionals, including early-career scientists, is critical towards a sustainable future. The European Young Chemists' Network (EYCN) has been actively working with the European Chemical Society (EuChemS) to create a platform for early-career chemists in policy advice. This article comments on the possible roles of scientists in policy-making and provides an overview of relevant initiatives and platforms at the European level that could facilitate involvement. Opportunities for participation in policy advice from the perspective of early-career chemists are discussed and examples of impact are provided, hoping to stimulate further discussions and engagement in policy-making.

10.
J Am Chem Soc ; 142(3): 1645-1654, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31913617

ABSTRACT

There has been an ongoing effort to overcome the limitations associated with the stability of hybrid organic-inorganic perovskite solar cells by using different organic agents as additives to the perovskite formulations. The functionality of organic additives has been predominantly limited to exploiting hydrogen-bonding interactions, while the relevant atomic-level binding modes remain elusive. Herein, we introduce a bifunctional supramolecular modulator, 1,2,4,5-tetrafluoro-3,6-diiodobenzene, which interacts with the surface of the triple-cation double-halide perovskite material via halogen bonding. We elucidate its binding mode using two-dimensional solid-state 19F NMR spectroscopy in conjunction with density functional theory calculations. As a result, we demonstrate a stability enhancement of the perovskite solar cells upon supramolecular modulation, without compromising the photovoltaic performances.

11.
J Am Chem Soc ; 142(47): 19980-19991, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170007

ABSTRACT

The use of molecular modulators to reduce the defect density at the surface and grain boundaries of perovskite materials has been demonstrated to be an effective approach to enhance the photovoltaic performance and device stability of perovskite solar cells. Herein, we employ crown ethers to modulate perovskite films, affording passivation of undercoordinated surface defects. This interaction has been elucidated by solid-state nuclear magnetic resonance and density functional theory calculations. The crown ether hosts induce the formation of host-guest complexes on the surface of the perovskite films, which reduces the concentration of surface electronic defects and suppresses nonradiative recombination by 40%, while minimizing moisture permeation. As a result, we achieved substantially improved photovoltaic performance with power conversion efficiencies exceeding 23%, accompanied by enhanced stability under ambient and operational conditions. This work opens a new avenue to improve the performance and stability of perovskite-based optoelectronic devices through supramolecular chemistry.

12.
Nano Lett ; 19(1): 150-157, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30540195

ABSTRACT

Three-dimensional (3D) perovskite materials display remarkable potential in photovoltaics owing to their superior solar-to-electric power conversion efficiency, with current efforts focused on improving stability. Two-dimensional (2D) perovskite analogues feature greater stability toward environmental factors, such as moisture, owing to a hydrophobic organic cation that acts as a spacer between the inorganic layers, which offers a significant advantage over their comparatively less stable 3D analogues. Here, we demonstrate the first example of a formamidinium (FA) containing Dion-Jacobson 2D perovskite material characterized by the BFA n-1Pb nI3 n+1 formulation through employing a novel bifunctional organic spacer (B), namely 1,4-phenylenedimethanammonium (PDMA). We achieve remarkable efficiencies exceeding 7% for (PDMA)FA2Pb3I10 based 2D perovskite solar cells resisting degradation when exposed to humid ambient air, which opens up new avenues in the design of stable perovskite materials.

13.
Angew Chem Int Ed Engl ; 59(12): 4691-4697, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-31846190

ABSTRACT

Formamidinium (FA) lead iodide perovskite materials feature promising photovoltaic performances and superior thermal stabilities. However, conversion of the perovskite α-FAPbI3 phase to the thermodynamically stable yet photovoltaically inactive δ-FAPbI3 phase compromises the photovoltaic performance. A strategy is presented to address this challenge by using low-dimensional hybrid perovskite materials comprising guaninium (G) organic spacer layers that act as stabilizers of the three-dimensional α-FAPbI3 phase. The underlying mode of interaction at the atomic level is unraveled by means of solid-state nuclear magnetic resonance spectroscopy, X-ray crystallography, transmission electron microscopy, molecular dynamics simulations, and DFT calculations. Low-dimensional-phase-containing hybrid FAPbI3 perovskite solar cells are obtained with improved performance and enhanced long-term stability.

14.
J Am Chem Soc ; 141(44): 17659-17669, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31593456

ABSTRACT

Chemical doping of inorganic-organic hybrid perovskites is an effective way of improving the performance and operational stability of perovskite solar cells (PSCs). Here we use 5-ammonium valeric acid iodide (AVAI) to chemically stabilize the structure of α-FAPbI3. Using solid-state MAS NMR, we demonstrate the atomic-level interaction between the molecular modulator and the perovskite lattice and propose a structural model of the stabilized three-dimensional structure, further aided by density functional theory (DFT) calculations. We find that one-step deposition of the perovskite in the presence of AVAI produces highly crystalline films with large, micrometer-sized grains and enhanced charge-carrier lifetimes, as probed by transient absorption spectroscopy. As a result, we achieve greatly enhanced solar cell performance for the optimized AVA-based devices with a maximum power conversion efficiency (PCE) of 18.94%. The devices retain 90% of the initial efficiency after 300 h under continuous white light illumination and maximum-power point-tracking measurement.

15.
Chemistry ; 25(36): 8440-8452, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31111578

ABSTRACT

The quest for nanoscale molecular machines has inspired the search for their close relatives, molecular grippers. This path was paved by the development of resorcin[4]arene cavitands and their quinone-based redox-active congeners. In this Concept article, the efforts to design and establish the control of quinone-functionalized resorcin[4]arenes by electronic and electromagnetic stimuli is described. This was achieved by relying on paramagnetic semiquinone radical anions formed electrochemically or by photoredox catalysis. The gripper-like motion of such species could not be studied by conventional NMR spectroscopy. Instead, an entirely different approach had to be developed that included various electroanalytical and spectroelectrochemical methods, including UV/Vis/NIR spectroelectrochemistry, pulsed EPR and Davies 1 H ENDOR spectroscopy, transient absorption spectroscopy, and time-resolved luminescence measurements, besides density functional theory calculations and X-ray crystallography. The conceptual breakthroughs are reviewed as well as the current state and future perspectives of photoredox-switchable molecular grippers.

16.
Chemistry ; 25(1): 323-333, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30600860

ABSTRACT

Chalcogen bonding (CB) is the focus of increased attention for its applications in medicinal chemistry, materials science, and crystal engineering. However, the origin of sulfur's recognition properties remains controversial, and experimental evidence for supporting theories is still emerging. Here, a comprehensive evaluation of sulfur CB interactions is presented by investigating 2,1,3-benzothiadiazole X-ray crystallographic structures gathered from the Cambridge Structure Database (CSD), Protein Data Bank (PDB), and own laboratory findings. Through the systematic analysis of substituent effects on a subset library of over thirty benzothiadiazole derivatives, the competing interactions have been categorized into four main classes, namely 2S-2N CB square, halogen bonding (XB), S⋅⋅⋅S, and hydrogen-bonding (HB). A geometric model is employed to characterize the 2S-2N CB square motifs and discuss the role of electrostatic, dipole, and orbital contributions toward the interaction.

17.
Chimia (Aarau) ; 73(4): 317-323, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30975264

ABSTRACT

Hybrid organic-inorganic perovskites have become one of the leading thin-film semiconductors for optoelectronics. Their broad application will greatly depend on overcoming the key obstacles associated with poor stability and limited scalability. There has been an ongoing effort to diminish some of these limitations by using organic additives. However, considering the lack of understanding of the underlying structure-property relationships, this progress was greatly based on trial and error as molecular-level design remains challenging. Our approach for enhancing the stability of hybrid perovskites without compromising their efficiency is based on judicious molecular design of multifunctional molecular modulators through fine-tuning of noncovalent interactions and exploiting their structural adaptability. The design principles were scrutinized by solid-state NMR spectroscopy to unravel a new path for stable and scalable perovskite solar cells, which we review in this article.

18.
Mater Adv ; 5(5): 1880-1886, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38444935

ABSTRACT

Artificial synapses based on resistive switching have emerged as a promising avenue for brain-inspired computing. Hybrid metal halide perovskites have provided the opportunity to simplify resistive switching device architectures due to their mixed electronic-ionic conduction, yet the instabilities under operating conditions compromise their reliability. We demonstrate reliable resistive switching and synaptic behaviour in layered benzylammonium (BzA) based halide perovskites of (BzA)2PbX4 composition (X = Br, I), showing a transformation of the resistive switching from digital to analog with the change of the halide anion. While (BzA)2PbI4 devices demonstrate gradual set and reset processes with reduced power consumption, the (BzA)2PbBr4 system features a more abrupt switching behaviour. Moreover, the iodide-based system displays excellent retention and endurance, whereas bromide-based devices achieve a superior on/off ratio. The underlying mechanism is attributed to the migration of halide ions and the formation of halide vacancy conductive filaments. As a result, the corresponding devices emulate synaptic characteristics, demonstrating the potential for neuromorphic computing. Such resistive switching and synaptic behaviour highlight (BzA)2PbX4 perovskites as promising candidates for non-volatile memory and neuromorphic computing.

19.
J Mater Chem C Mater ; 12(22): 7909-7915, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38855264

ABSTRACT

The understanding of mixed ionic-electronic conductivity in hybrid perovskites has enabled major advances in the development of optoelectronic devices based on this class of materials. While recent investigations revealed the potential of using dimensionality effects for various applications, the implication of this strategy on mixed conductivity is yet to be established. Here, we present a systematic analysis of mixed conduction in layered (2D) hybrid halide perovskite films based on 1,4-phenylenedimethylammonium (PDMA) and benzylammonium (BzA) organic spacers in (PDMA)PbI4 and (BzA)2PbI4 compositions, forming representative Dion-Jacobson (DJ) and Ruddleson-Popper (RP) phases, respectively. Electrochemical measurements of charge transport parallel to the layered structure reveal mixed ionic-electronic conduction with electronic transport mediated by electron holes in both DJ and RP phases. In comparison to the 3D perovskites, larger activation energies for both ionic and electronic conductivities are observed which result in lower absolute values. While the layered perovskites still allow for a relatively efficient exchange of iodine with the gas phase, the lower change of conductivity on the variation of the iodine partial pressure compared with 3D perovskites is consistent with the exchange affecting only a fraction of the film, with implications for the encapsulating efficacy of these materials. We complement the analysis with a demonstration of the superior thermal stability of DJ structures compared to their RP counterparts. This can guide future explorations of dimensionality and composition to control the transport and stabilization properties of 2D perovskite films.

20.
Nanoscale Horiz ; 9(7): 1146-1154, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38767026

ABSTRACT

Hybrid halide perovskites are attractive candidates for resistive switching memories in neuromorphic computing applications due to their mixed ionic-electronic conductivity. Moreover, their exceptional optoelectronic characteristics make them effective as semiconductors in photovoltaics, opening perspectives for self-powered memory elements. These devices, however, remain unexploited, which is related to the variability in their switching characteristics, weak endurance, and retention, which limit their performance and practical use. To address this challenge, we applied low-dimensional perovskite capping layers onto 3D mixed halide perovskites using two perfluoroarene organic cations, namely (perfluorobenzyl)ammonium and (perfluoro-1,4-phenylene)dimethylammonium iodide, forming Ruddlesden-Popper and Dion-Jacobson 2D perovskite phases, respectively. The corresponding mixed-dimensional perovskite heterostructures were used to fabricate resistive switching memories based on perovskite solar cell architectures, showing that the devices based on perfluoroarene heterostructures exhibited enhanced performance and stability in inert and ambient air atmosphere. This opens perspectives for multidimensional perovskite materials in durable self-powered memory elements in the future.

SELECTION OF CITATIONS
SEARCH DETAIL