ABSTRACT
A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.
Subject(s)
Genes, Tumor Suppressor , Mosaicism , Humans , Mutation , Phenotype , PrevalenceABSTRACT
Despite evidence that deleterious variants in the same genes are implicated across multiple neurodevelopmental and neuropsychiatric disorders, there has been considerable interest in identifying genes that, when mutated, confer risk that is largely specific for autism spectrum disorder (ASD). Here, we review the findings and limitations of recent efforts to identify relatively "autism-specific" genes, efforts which focus on rare variants of large effect size that are thought to account for the observed phenotypes. We present a divergent interpretation of published evidence; discuss practical and theoretical issues related to studying the relationships between rare, large-effect deleterious variants and neurodevelopmental phenotypes; and describe potential future directions of this research. We argue that there is currently insufficient evidence to establish meaningful ASD specificity of any genes based on large-effect rare-variant data.
Subject(s)
Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Uncertainty , Cohort Studies , Genetic Testing , Genotype , Humans , Reproducibility of ResultsABSTRACT
PURPOSE: Postzygotic (somatic) variants in the mTOR pathway genes cause a spectrum of distinct developmental abnormalities. Accurate classification of somatic variants in this group of disorders is crucial for affected individuals and their families. METHODS: The ClinGen Brain Malformation Variant Curation Expert Panel was formed to curate somatic variants associated with developmental brain malformations. We selected the genes AKT3, MTOR, PIK3CA, and PIK3R2 as the first set of genes to provide additional specifications to the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) sequence variant interpretation guidelines, which currently focus solely on germline variants. RESULTS: A total of 24 of the original 28 ACMG/AMP criteria required modification. Several modifications used could be applied to other genes and disorders in which somatic variants play a role: 1) using variant allele fraction differences as evidence that somatic mutagenesis occurred as a proxy for de novo variation, 2) incorporating both somatic and germline evidence, and 3) delineating phenotype on the basis of variable tissue expression. CONCLUSION: We have established a framework for rigorous interpretation of somatic mosaic variants, addressing issues unique to somatic variants that will be applicable to many genes and conditions.
Subject(s)
Brain , Congenital Abnormalities , Genetic Variation , Genome, Human , Humans , Brain/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Congenital Abnormalities/genetics , Genetic Testing , Genetic Variation/genetics , Mutation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/geneticsABSTRACT
PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs.
Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Neurodevelopmental Disorders , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Autistic Disorder/diagnosis , Autistic Disorder/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Neurodevelopmental Disorders/geneticsABSTRACT
Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect â¼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.
Subject(s)
Codon/genetics , Genetic Association Studies , Mutation, Missense/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Amino Acid Sequence , Child , Cohort Studies , Computer Simulation , Demography , Female , Heterozygote , Humans , Male , Neurofibromin 1/chemistry , Phenotype , Young AdultABSTRACT
Chromosomal microarray technologies, including array comparative genomic hybridization and single-nucleotide polymorphism array, are widely applied in the diagnostic evaluation for both constitutional and neoplastic disorders. In a constitutional setting, this technology is accepted as the first-tier test for the evaluation of chromosomal imbalances associated with intellectual disability, autism, and/or multiple congenital anomalies. Furthermore, chromosomal microarray analysis is recommended for patients undergoing invasive prenatal diagnosis with one or more major fetal structural abnormalities identified by ultrasonographic examination, and in the evaluation of intrauterine fetal demise or stillbirth when further cytogenetic analysis is desired. This technology also provides important genomic data in the diagnosis, prognosis, and therapy of neoplastic disorders, including both hematologic malignancies and solid tumors. To assist clinical laboratories in the validation of chromosomal microarray methodologies for constitutional and neoplastic applications, the American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee has developed these updated technical laboratory standards, which replace the ACMG technical standards and guidelines for microarray analysis in constitutional and neoplastic disorders previously published in 2013.
Subject(s)
Genetics, Medical , Neoplasms , Comparative Genomic Hybridization , Genomics , Humans , Microarray Analysis , Neoplasms/diagnosis , Neoplasms/genetics , United StatesABSTRACT
SATB2-Associated syndrome (SAS) is an autosomal dominant, multisystemic, neurodevelopmental disorder due to alterations in SATB2 at 2q33.1. A limited number of individuals with 2q33.1 contiguous deletions encompassing SATB2 (ΔSAS) have been described in the literature. We describe 17 additional individuals with ΔSAS, review the phenotype of 33 previously published individuals with 2q33.1 deletions (n = 50, mean age = 8.5 ± 7.8 years), and provide a comprehensive comparison to individuals with other molecular mechanisms that result in SAS (non-ΔSAS). Individuals in the ΔSAS group were often underweight for age (20/41 = 49%) with a progressive decline in weight (95% CI = -2.3 to -1.1, p < 0.0001) and height (95% CI = -2.3 to -1.0, p < 0.0001) Z-score means from birth to last available measurement. ΔSAS individuals were often noted to have a broad spectrum of facial dysmorphism. A composite image of ΔSAS individuals generated by automated image analysis was distinct as compared to matched controls and non-ΔSAS individuals. We also present additional genotype-phenotype correlations for individuals in the ΔSAS group such as an increased risk for aortic root/ascending aorta dilation and primary pulmonary hypertension for those individuals with contiguous gene deletions that include COL3A1/COL5A2 and BMPR2, respectively. Based on these findings, we provide additional care recommendations for individuals with ΔSAS variants.
Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 2/genetics , Matrix Attachment Region Binding Proteins/deficiency , Transcription Factors/deficiency , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 2/ultrastructure , Collagen Type III/deficiency , Collagen Type III/genetics , Collagen Type V/deficiency , Collagen Type V/genetics , Dwarfism/genetics , Face/abnormalities , Female , Genetic Association Studies , Gestational Age , Humans , Hypertension, Pulmonary/genetics , Infant , Male , Matrix Attachment Region Binding Proteins/genetics , Microcephaly/genetics , Phenotype , Thinness/genetics , Transcription Factors/geneticsABSTRACT
PURPOSE OF REVIEW: Exposure to radiation is known to have adverse effects such as secondary malignancies. Patients with nephrolithiasis are exposed to radiation in the workup and treatment of their condition. Furthermore, exposure to radiation is often repeated due to the high recurrence rate of nephrolithiasis. RECENT FINDINGS: We discuss practices inside and outside of the operating room to strive to keep radiation exposure as low as reasonably achievable (ALARA) for patients being treated for nephrolithiasis. These efforts include reduced dose computed tomography scans, fluoroless surgical techniques and new alternative technologies. SUMMARY: Maintaining radiation exposure ALARA for our patients is increasingly practical. The urologist must make every effort to adhere to ALARA principles to protect patients from the stochastic effects of radiation.
Subject(s)
Kidney Calculi , Radiation Exposure , Humans , Neoplasm Recurrence, Local , Radiation Dosage , Radiation Exposure/adverse effects , Radiation Exposure/prevention & control , Tomography, X-Ray ComputedABSTRACT
PURPOSE: Exome and genome sequencing (ES/GS) are performed frequently in patients with congenital anomalies, developmental delay, or intellectual disability (CA/DD/ID), but the impact of results from ES/GS on clinical management and patient outcomes is not well characterized. A systematic evidence review (SER) can support future evidence-based guideline development for use of ES/GS in this patient population. METHODS: We undertook an SER to identify primary literature from January 2007 to March 2019 describing health, clinical, reproductive, and psychosocial outcomes resulting from ES/GS in patients with CA/DD/ID. A narrative synthesis of results was performed. RESULTS: We retrieved 2654 publications for full-text review from 7178 articles. Only 167 articles met our inclusion criteria, and these were primarily case reports or small case series of fewer than 20 patients. The most frequently reported outcomes from ES/GS were changes to clinical management or reproductive decision-making. Two studies reported on the reduction of mortality or morbidity or impact on quality of life following ES/GS. CONCLUSION: There is evidence that ES/GS for patients with CA/DD/ID informs clinical and reproductive decision-making, which could lead to improved outcomes for patients and their family members. Further research is needed to generate evidence regarding health outcomes to inform robust guidelines regarding ES/GS in the care of patients with CA/DD/ID.
Subject(s)
Intellectual Disability , Child , Chromosome Mapping , Exome/genetics , Humans , Intellectual Disability/genetics , Quality of Life , Exome SequencingABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
PURPOSE: For neurodevelopmental disorders (NDDs), etiological evaluation can be a diagnostic odyssey involving numerous genetic tests, underscoring the need to develop a streamlined algorithm maximizing molecular diagnostic yield for this clinical indication. Our objective was to compare the yield of exome sequencing (ES) with that of chromosomal microarray (CMA), the current first-tier test for NDDs. METHODS: We performed a PubMed scoping review and meta-analysis investigating the diagnostic yield of ES for NDDs as the basis of a consensus development conference. We defined NDD as global developmental delay, intellectual disability, and/or autism spectrum disorder. The consensus development conference included input from genetics professionals, pediatric neurologists, and developmental behavioral pediatricians. RESULTS: After applying strict inclusion/exclusion criteria, we identified 30 articles with data on molecular diagnostic yield in individuals with isolated NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated conditions. ES yield for NDDs is markedly greater than previous studies of CMA (15-20%). CONCLUSION: Our review demonstrates that ES consistently outperforms CMA for evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at the beginning of the evaluation of unexplained NDDs.
Subject(s)
Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Diagnostic Tests, Routine/methods , Exome/genetics , Genetic Testing/methods , Humans , Intellectual Disability/genetics , Exome Sequencing/methodsABSTRACT
A correction has been published to this Article. The PDF and HTML have been updated accordingly.
ABSTRACT
PURPOSE: Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors. METHODS: A total of 135 individuals from 103 unrelated families, all carrying the constitutional NF1 p.Met992del pathogenic variant and clinically assessed using the same standardized phenotypic checklist form, were included in this study. RESULTS: None of the individuals had externally visible plexiform or histopathologically confirmed cutaneous or subcutaneous neurofibromas. We did not identify any complications, such as symptomatic optic pathway gliomas (OPGs) or symptomatic spinal neurofibromas; however, 4.8% of individuals had nonoptic brain tumors, mostly low-grade and asymptomatic, and 38.8% had cognitive impairment/learning disabilities. In an individual with the NF1 constitutional c.2970_2972del and three astrocytomas, we provided proof that all were NF1-associated tumors given loss of heterozygosity at three intragenic NF1 microsatellite markers and c.2970_2972del. CONCLUSION: We demonstrate that individuals with the NF1 p.Met992del pathogenic variant have a mild NF1 phenotype lacking clinically suspected plexiform, cutaneous, or subcutaneous neurofibromas. However, learning difficulties are clearly part of the phenotypic presentation in these individuals and will require specialized care.
Subject(s)
Learning Disabilities/genetics , Neurofibroma, Plexiform/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Learning Disabilities/physiopathology , Male , Mutation, Missense/genetics , Neurofibroma, Plexiform/physiopathology , Neurofibromatosis 1/pathology , Sequence Deletion , Young AdultABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow-derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury.
Subject(s)
Chemokine CXCL12/metabolism , Fibroblasts/physiology , Idiopathic Pulmonary Fibrosis/immunology , Lung/pathology , Mesenchymal Stem Cells/pathology , T-Lymphocytes/immunology , Twist-Related Protein 1/metabolism , Aged , Animals , Bleomycin , Cells, Cultured , Chemokine CXCL12/genetics , Collagen Type I/metabolism , Female , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Male , Mice , Mice, Knockout , Middle Aged , NF-kappa B/metabolism , RNA, Small Interfering/genetics , Twist-Related Protein 1/genetics , Up-RegulationABSTRACT
PURPOSE: Chromosomal microarray (CMA) is recommended as the first-tier test in evaluation of individuals with neurodevelopmental disability and congenital anomalies. CMA may not detect balanced cytogenomic abnormalities or uniparental disomy (UPD), and deletion/duplications and regions of homozygosity may require additional testing to clarify the mechanism and inform accurate counseling. We conducted an evidence review to synthesize data regarding the benefit of additional testing after CMA to inform a genetic diagnosis. METHODS: The review was guided by key questions related to the detection of genomic events that may require additional testing. A PubMed search for original research articles, systematic reviews, and meta-analyses was evaluated from articles published between 1 January 1983 and 31 March 2017. Based on the key questions, articles were retrieved and data extracted in parallel with comparison of results and discussion to resolve discrepancies. Variables assessed included study design and outcomes. RESULTS: A narrative synthesis was created for each question to describe the occurrence of, and clinical significance of, additional diagnostic findings from subsequent testing performed after CMA. CONCLUSION: These findings may be used to assist the laboratory and clinician when making recommendations about additional testing after CMA, as it impacts clinical care, counseling, and diagnosis.
Subject(s)
Congenital Abnormalities/genetics , Genetic Testing , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Chromosome Aberrations , Chromosomes/genetics , Congenital Abnormalities/diagnosis , Congenital Abnormalities/physiopathology , Genetics, Medical/trends , Genomics/trends , Humans , Intellectual Disability/diagnosis , Intellectual Disability/physiopathology , Karyotyping , Microarray Analysis , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/physiopathologySubject(s)
Exome , Genetics, Medical , Humans , United States , Exome/genetics , Genomics , Base Sequence , Policy , Genetic Testing , Genome, Human/genetics , Incidental FindingsABSTRACT
BACKGROUND: Hutchinson-Gilford progeria syndrome is an extremely rare, fatal, segmental premature aging syndrome caused by a mutation in LMNA yielding the farnesylated aberrant protein progerin. Without progerin-specific treatment, death occurs at an average age of 14.6 years from an accelerated atherosclerosis. A previous single-arm clinical trial demonstrated that the protein farnesyltransferase inhibitor lonafarnib ameliorates some aspects of cardiovascular and bone disease. This present trial sought to further improve disease by additionally inhibiting progerin prenylation. METHODS: Thirty-seven participants with Hutchinson-Gilford progeria syndrome received pravastatin, zoledronic acid, and lonafarnib. This combination therapy was evaluated, in addition to descriptive comparisons with the prior lonafarnib monotherapy trial. RESULTS: No participants withdrew because of side effects. Primary outcome success was predefined by improved per-patient rate of weight gain or carotid artery echodensity; 71.0% of participants succeeded (P<0.0001). Key cardiovascular and skeletal secondary variables were predefined. Secondary improvements included increased areal (P=0.001) and volumetric (P<0.001-0.006) bone mineral density and 1.5- to 1.8-fold increases in radial bone structure (P<0.001). Median carotid artery wall echodensity and carotid-femoral pulse wave velocity demonstrated no significant changes. Percentages of participants with carotid (5% to 50%; P=0.001) and femoral (0% to 12%; P=0.13) artery plaques and extraskeletal calcifications (34.4% to 65.6%; P=0.006) increased. Other than increased bone mineral density, no improvement rates exceeded those of the prior lonafarnib monotherapy treatment trial. CONCLUSIONS: Comparisons with lonafarnib monotherapy treatment reveal additional bone mineral density benefit but likely no added cardiovascular benefit with the addition of pravastatin and zoledronic acid. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00879034 and NCT00916747.