Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 298
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956378

ABSTRACT

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.

2.
Immunity ; 48(4): 760-772.e4, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29625893

ABSTRACT

Cerebral malaria is a deadly complication of Plasmodium infection and involves blood brain barrier (BBB) disruption following infiltration of white blood cells. During experimental cerebral malaria (ECM), mice inoculated with Plasmodium berghei ANKA-infected red blood cells develop a fatal CM-like disease caused by CD8+ T cell-mediated pathology. We found that treatment with interleukin-15 complex (IL-15C) prevented ECM, whereas IL-2C treatment had no effect. IL-15C-expanded natural killer (NK) cells were necessary and sufficient for protection against ECM. IL-15C treatment also decreased CD8+ T cell activation in the brain and prevented BBB breakdown without influencing parasite load. IL-15C induced NK cells to express IL-10, which was required for IL-15C-mediated protection against ECM. Finally, we show that ALT-803, a modified human IL-15C, mediates similar induction of IL-10 in NK cells and protection against ECM. These data identify a regulatory role for cytokine-stimulated NK cells in the prevention of a pathogenic immune response.


Subject(s)
Interleukin-10/immunology , Interleukin-15/immunology , Killer Cells, Natural/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/immunology , Proteins/pharmacology , Animals , Blood-Brain Barrier/pathology , Brain/immunology , Brain/pathology , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/biosynthesis , Lymphocyte Activation/immunology , Malaria, Cerebral/microbiology , Malaria, Cerebral/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Fusion Proteins
3.
Blood ; 141(8): 846-855, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36327161

ABSTRACT

The development of methods to derive induced pluripotent stem cells (iPSCs) has propelled stem cell research, and has the potential to revolutionize many areas of medicine, including cancer immunotherapy. These cells can be propagated limitlessly and can differentiate into nearly any specialized cell type. The ability to perform precise multigene engineering at the iPSC stage, generate master cell lines after clonal selection, and faithfully promote differentiation along natural killer (NK) cells and T-cell lineages is now leading to new opportunities for the administration of off-the-shelf cytotoxic lymphocytes with direct antigen targeting to treat patients with relapsed/refractory cancer. In this review, we highlight the recent progress in iPSC editing and guided differentiation in the development of NK- and T-cell products for immunotherapy. We also discuss some of the potential barriers that remain in unleashing the full potential of iPSC-derived cytotoxic effector cells in the adoptive transfer setting, and how some of these limitations may be overcome through gene editing.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Humans , T-Lymphocytes , Killer Cells, Natural , Immunotherapy , Neoplasms/therapy , Immunotherapy, Adoptive
4.
J Immunol ; 211(4): 539-550, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37341510

ABSTRACT

CMV can elicit adaptive immune features in both mouse and human NK cells. Mouse Ly49H+ NK cells expand 100- to 1000-fold in response to mouse CMV infection and persist for months after exposure. Human NKG2C+ NK cells also expand after human CMV (HCMV) infection and persist for months. The clonal expansion of adaptive NK cells is likely an energy-intensive process, and the metabolic requirements that support adaptive NK cell expansion and persistence remain largely uncharacterized. We previously reported that NK cells from HCMV-seropositive donors had increased maximum capacity for both glycolysis and mitochondrial oxidative phosphorylation relative to NK cells from HCMV-seronegative donors. In this article, we report an extension of this work in which we analyzed the metabolomes of NK cells from HCMV-seropositive donors with NKG2C+ expansions and NK cells from HCMV seronegative donors without such expansions. NK cells from HCMV+ donors exhibited striking elevations in purine and pyrimidine deoxyribonucleotides, along with moderate increases in plasma membrane components. Mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that, as a part of mTOR complex 1 (mTORC1), bridges nutrient signaling to metabolic processes necessary for cell growth. Signaling through mTORC1 induces both nucleotide and lipid synthesis. We observed elevated mTORC1 signaling on activation in both NKG2C- and NKG2C+ NK cells from HCMV+ donors relative to those from HCMV- donors, demonstrating a correlation between higher mTORC1 activity and synthesis of key metabolites for cell growth and division.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Animals , Mice , Killer Cells, Natural , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Metabolome , NK Cell Lectin-Like Receptor Subfamily C/metabolism
5.
J Immunol ; 210(8): 1108-1122, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36881874

ABSTRACT

CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Syk Kinase/genetics , CRISPR-Cas Systems , Killer Cells, Natural , Cytokines , Antibody-Dependent Cell Cytotoxicity
6.
J Infect Dis ; 229(5): 1256-1265, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38207119

ABSTRACT

BACKGROUND: Natural killer (NK) cells are dysfunctional in chronic human immunodeficiency virus (HIV) infection as they are not able to clear virus. We hypothesized that an infusion of NK cells, supported by interleukin 2 (IL-2) or IL-15, could decrease virus-producing cells in the lymphatic tissues. METHODS: We conducted a phase 1 pilot study in 6 persons with HIV (PWH), where a single infusion of haploidentical related donor NK cells was given plus either IL-2 or N-803 (an IL-15 superagonist). RESULTS: The approach was well tolerated with no unexpected adverse events. We did not pretreat recipients with cyclophosphamide or fludarabine to "make immunologic space," reasoning that PWH on stable antiretroviral treatment remain T-cell depleted in lymphatic tissues. We found donor cells remained detectable in blood for up to 8 days (similar to what is seen in cancer pretreatment with lymphodepleting chemotherapy) and in the lymph nodes and rectum up to 28 days. There was a moderate decrease in the frequency of viral RNA-positive cells in lymph nodes. CONCLUSIONS: There was a moderate decrease in HIV-producing cells in lymph nodes. Further studies are warranted to determine the impact of healthy NK cells on HIV reservoirs and if restoring NK-cell function could be part of an HIV cure strategy. Clinical Trials Registration. NCT03346499 and NCT03899480.


Subject(s)
HIV Infections , Interleukin-15 , Interleukin-2 , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , HIV Infections/immunology , HIV Infections/virology , HIV Infections/drug therapy , Male , Middle Aged , Adult , Pilot Projects , Female , Viral Load , Lymph Nodes/immunology , HIV-1/immunology
7.
Blood ; 140(23): 2451-2462, 2022 12 08.
Article in English | MEDLINE | ID: mdl-35917442

ABSTRACT

Substantial numbers of B cell leukemia and lymphoma patients relapse due to antigen loss or heterogeneity after anti-CD19 chimeric antigen receptor (CAR) T cell therapy. To overcome antigen escape and address antigen heterogeneity, we engineered induced pluripotent stem cell-derived NK cells to express both an NK cell-optimized anti-CD19 CAR for direct targeting and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity. In addition, we introduced a membrane-bound IL-15/IL-15R fusion protein to promote in vivo persistence. These engineered cells, termed iDuo NK cells, displayed robust CAR-mediated cytotoxic activity that could be further enhanced with therapeutic antibodies targeting B cell malignancies. In multiple in vitro and xenogeneic adoptive transfer models, iDuo NK cells exhibited robust anti-lymphoma activity. Furthermore, iDuo NK cells effectively eliminated both CD19+ and CD19- lymphoma cells and displayed a unique propensity for targeting malignant cells over healthy cells that expressed CD19, features not achievable with anti-CAR19 T cells. iDuo NK cells combined with therapeutic antibodies represent a promising approach to prevent relapse due to antigen loss and tumor heterogeneity in patients with B cell malignancies.


Subject(s)
Leukemia , Neoplasms , Humans , Antigenic Drift and Shift , Leukemia/therapy , Killer Cells, Natural
8.
Blood ; 139(8): 1177-1183, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34797911

ABSTRACT

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.


Subject(s)
Antineoplastic Agents/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Interleukin-15/administration & dosage , Killer Cells, Natural/transplantation , Leukemia, Myeloid, Acute , Recombinant Fusion Proteins/administration & dosage , Allogeneic Cells/immunology , Female , Humans , Interleukin-15/immunology , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Male
9.
Immunity ; 42(3): 443-56, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25786176

ABSTRACT

The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets.


Subject(s)
Antibodies/immunology , Cytomegalovirus Infections/genetics , Epigenesis, Genetic/immunology , Killer Cells, Natural/immunology , Kruppel-Like Transcription Factors/immunology , T-Lymphocytes, Cytotoxic/immunology , Adaptive Immunity , Cell Proliferation , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/virology , DNA Methylation , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Profiling , Humans , Immunophenotyping , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Killer Cells, Natural/classification , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Microarray Analysis , NK Cell Lectin-Like Receptor Subfamily C/deficiency , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , Promoter Regions, Genetic , Promyelocytic Leukemia Zinc Finger Protein , Protein-Tyrosine Kinases/deficiency , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/immunology , Receptors, IgG/deficiency , Receptors, IgG/genetics , Receptors, IgG/immunology , Signal Transduction , Syk Kinase , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Cytotoxic/virology , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/immunology
10.
J Immunol ; 206(12): 3064-3072, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34117109

ABSTRACT

In the treatment of acute myelogenous leukemia with allogeneic hematopoietic cell transplantation, we previously demonstrated that there is a greater protection from relapse of leukemia when the hematopoietic cell transplantation donor has either the Cen B/B KIR genotype or a genotype having two or more KIR B gene segments. In those earlier analyses, KIR genotyping could only be assessed at the low resolution of gene presence or absence. To give the analysis greater depth, we developed high-resolution KIR sequence-based typing that defines all the KIR alleles and distinguishes the expressed alleles from those that are not expressed. We now describe and analyze high-resolution KIR genotypes for 890 donors of this human transplant cohort. Cen B01 and Cen B02 are the common CenB haplotypes, with Cen B02 having evolved from Cen B01 by deletion of the KIR2DL5, 2DS3/5, 2DP1, and 2DL1 genes. We observed a consistent trend for Cen B02 to provide stronger protection against relapse than Cen B01 This correlation indicates that protection depends on the donor having inhibitory KIR2DL2 and/or activating KIR2DS2, and is enhanced by the donor lacking inhibitory KIR2DL1, 2DL3, and 3DL1. High-resolution KIR typing has allowed us to compare the strength of the interactions between the recipient's HLA class I and the KIR expressed by the donor-derived NK cells and T cells, but no clinically significant interactions were observed. The trend observed between donor Cen B02 and reduced relapse of leukemia points to the value of studying ever larger transplant cohorts.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Genotype , HLA Antigens , Humans , Leukemia, Myeloid, Acute/genetics , Receptors, KIR/genetics , Recurrence
11.
Carcinogenesis ; 43(5): 430-436, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35259245

ABSTRACT

Cytomegalovirus (CMV) is a highly prevalent human herpes virus that exerts a strong influence on immune repertoire which may influence cancer risk. We have tested whether CMV immunoglobulin G (IgG) serostatus is associated with immune cell proportions (n = 132 population controls), human papillomavirus (HPV) co-infection and head and neck cancer risk (n = 184 cancer cases and 188 controls) and patient survival. CMV status was not associated with the proportion of Natural Killer cells, B cells or the neutrophil-to-lymphocyte ratio. However, CD8+ T cells increased with increasing categories of IgG titers (P =1.7 × 10-10), and titers were inversely associated with the CD4:CD8 ratio (P = 5.6 × 10-5). Despite these differences in T cell proportions, CMV was not associated with HPV16 co-infection. CMV seropositivity was similar in cases (52%) and controls (47%) and was not associated with patient survival (hazard ratio [HR] 1.14, 95% confidence interval [CI]: 0.70 to 1.86). However, those patients with the highest titers had the worst survival (HR 1.91, 95% CI: 1.13 to 3.23). Tumor-based data from The Cancer Genome Atlas demonstrated that the presence of CMV transcripts was associated with worse patient survival (HR 1.79, 95% CI: 0.96 to 2.78). These findings confirm that a history of CMV infection alters T cell proportions, but this does not translate to HPV16 co-infection or head and neck cancer risk. Our data suggest that high titers and active CMV virus in the tumor environment may confer worse survival.


Subject(s)
Coinfection , Cytomegalovirus Infections , Head and Neck Neoplasms , CD8-Positive T-Lymphocytes , Coinfection/complications , Cytomegalovirus , Cytomegalovirus Infections/complications , Humans , Immunoglobulin G
12.
Blood ; 135(6): 399-410, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31856277

ABSTRACT

Antibody-dependent cellular cytotoxicity (ADCC) is a key effector mechanism of natural killer (NK) cells that is mediated by therapeutic monoclonal antibodies (mAbs). This process is facilitated by the Fc receptor CD16a on human NK cells. CD16a appears to be the only activating receptor on NK cells that is cleaved by the metalloprotease a disintegrin and metalloproteinase-17 upon stimulation. We previously demonstrated that a point mutation of CD16a prevents this activation-induced surface cleavage. This noncleavable CD16a variant is now further modified to include the high-affinity noncleavable variant of CD16a (hnCD16) and was engineered into human induced pluripotent stem cells (iPSCs) to create a renewable source for human induced pluripotent stem cell-derived NK (hnCD16-iNK) cells. Compared with unmodified iNK cells and peripheral blood-derived NK (PB-NK) cells, hnCD16-iNK cells proved to be highly resistant to activation-induced cleavage of CD16a. We found that hnCD16-iNK cells were functionally mature and exhibited enhanced ADCC against multiple tumor targets. In vivo xenograft studies using a human B-cell lymphoma demonstrated that treatment with hnCD16-iNK cells and anti-CD20 mAb led to significantly improved regression of B-cell lymphoma compared with treatment utilizing anti-CD20 mAb with PB-NK cells or unmodified iNK cells. hnCD16-iNK cells, combined with anti-HER2 mAb, also mediated improved survival in an ovarian cancer xenograft model. Together, these findings show that hnCD16-iNK cells combined with mAbs are highly effective against hematologic malignancies and solid tumors that are typically resistant to NK cell-mediated killing, demonstrating the feasibility of producing a standardized off-the-shelf engineered NK cell therapy with improved ADCC properties to treat malignancies that are otherwise refractory.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Cell Cytotoxicity , Killer Cells, Natural/transplantation , Lymphoma, B-Cell/therapy , Ovarian Neoplasms/therapy , Receptors, IgG/immunology , Animals , Antigens, CD20/immunology , Antineoplastic Agents, Immunological/therapeutic use , Cell Line , Cell Line, Tumor , Female , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Lymphoma, B-Cell/immunology , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/immunology
13.
J Immunol ; 205(6): 1513-1523, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32759296

ABSTRACT

Variegated expression of killer Ig-like receptors (KIR) in human NK cells is a stochastic process exclusive to subsets of mature NK cells and CD8+ T cells. Allele-specific KIR expression is maintained by DNA methylation within the proximal promoter regions. Because KIR genes are densely methylated in NK cell progenitors, there is an implied stage of human NK cell development in which DNA demethylation takes place to allow for active transcription. When and how this process occurs is unknown. In this study, we show that KIR proximal promoters are densely methylated in less mature CD56bright NK cells and are progressively demethylated in CD56dim NK cells as they mature and acquire KIR. We hypothesized that ten-eleven translocation (TET) enzymes, which oxidize 5mC on DNA could mediate KIR promoter demethylation. The catalytic efficiency of TET enzymes is known to be enhanced by ascorbic acid. We found that the addition of ascorbic acid to ex vivo culture of sorted CD56bright NK cells increased the frequency of KIR expression in a dose-dependent manner and facilitated demethylation of proximal promoters. A marked enrichment of the transcription factor Runx3 as well as TET2 and TET3 was observed within proximal KIR promoters in CD56bright NK cells cultured with ascorbic acid. Additionally, overexpression of TET3 and Runx3 promoted KIR expression in CD56bright NK cells and NK-92 cells. Our results show that KIR promoter demethylation can be induced in CD56bright, and this process is facilitated by ascorbic acid.


Subject(s)
Ascorbic Acid/metabolism , Killer Cells, Natural/metabolism , Receptors, KIR/metabolism , CD56 Antigen/metabolism , Cell Differentiation , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Demethylation , Dioxygenases/genetics , Dioxygenases/metabolism , Gene Expression Regulation , Humans , Killer Cells, Natural/immunology , Lymphocyte Activation , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, KIR/genetics
14.
Mol Ther ; 29(12): 3410-3421, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34174441

ABSTRACT

Natural killer (NK) cells mediate the cytolysis of transformed cells and are currently used as an adoptive cellular therapy to treat cancer. Infection with human cytomegalovirus has been shown to expand a subset of "adaptive" NK cells expressing the activation receptor NKG2C that have preferred functional attributes distinct from conventional NK cells. Because NKG2C delivers a strong activating signal to NK cells, we hypothesized that NKG2C could specifically trigger NK-cell-mediated antitumor responses. To elicit a tumor-directed response from NKG2C+ NK cells, we created an anti-NKG2C/IL-15/anti-CD33 killer engager called NKG2C-KE that directs NKG2C+ cells to target CD33+ cells and tumor-associated antigen expressed by acute myelogenous leukemia cells. The NKG2C-KE induced specific degranulation, interferon-γ production, and proliferation of NKG2C-expressing NK cells from patients who reactivated cytomegalovirus after allogeneic transplantation. The NKG2C-KE was also tested in a more homogeneous system using induced pluripotent stem cell (iPSC)-derived NK (iNK) cells that have been engineered to express NKG2C at high levels. The NKG2C-KE triggered iNK-cell-mediated cytotoxicity against CD33+ cells and primary AML blasts. The NKG2C-KE-specific interaction with adaptive NK and NKG2C+ iNK cells represents a new immunotherapeutic paradigm that uniquely engages highly active NK cells to induce cytotoxicity against AML through redirected targeting.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Cytomegalovirus , Humans , Interleukin-15 , Killer Cells, Natural , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy
15.
Cancer Immunol Immunother ; 70(12): 3701-3708, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34398302

ABSTRACT

Similar to pediatric acute myeloid leukemia (AML) the subgroup of biphenotypic acute lymphoblastic leukemia (ALL) is a rare complex entity with adverse outcome, characterized by the surface expression of CD33. Despite novel and promising anti-CD19 targeted immunotherapies such as chimeric antigen receptor T cells and bispecific anti-CD19/CD3 antibodies, relapse and resistance remain a major challenge in about 30% to 60% of patients. To investigate the potential role of the fully humanized bispecific antibody CD16 × CD33 (BiKE) in children with CD33+ acute leukemia, we tested whether the reagent was able to boost NK cell effector functions against CD33+ AML and biphenotypic ALL blasts. Stimulation of primary NK cells from healthy volunteers with 16 × 33 BiKE led to increased cytotoxicity, degranulation and cytokine production against CD33+ cell lines. Moreover, BiKE treatment significantly increased degranulation, IFN-γ and TNF-α production against primary ALL and AML targets. Importantly, also NK cells from leukemic patients profited from restoration of effector functions by BiKE treatment, albeit to a lesser extent than NK cells from healthy donors. In particular, those patients with low perforin and granzyme expression showed compromised cytotoxic function even in the presence of BiKE. In patients with intrinsic NK cell deficiency, combination therapy of CD16xCD33 BiKE and allogeneic NK cells might thus be a promising therapeutic approach. Taken together, CD16xCD33 BiKE successfully increased NK cell effector functions against pediatric AML and biphenotypic ALL blasts and constitutes a promising new option for supporting maintenance therapy or "bridging" consolidation chemotherapy before hematopoietic stem cell transplantation.


Subject(s)
Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Receptors, IgG/immunology , Sialic Acid Binding Ig-like Lectin 3/immunology , Antibodies, Bispecific/immunology , Cell Line , Cell Line, Tumor , Cytotoxicity, Immunologic/immunology , GPI-Linked Proteins/immunology , HL-60 Cells , Humans , Immunotherapy/methods , Lymphocyte Activation/immunology
16.
Blood ; 134(19): 1670-1682, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31533918

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) can subdue inflammation. In mice with acute graft-versus-host disease (GVHD), donor MDSC infusion enhances survival that is only partial and transient because of MDSC inflammasome activation early posttransfer, resulting in differentiation and loss of suppressor function. Here we demonstrate that conditioning regimen-induced adenosine triphosphate (ATP) release is a primary driver of MDSC dysfunction through ATP receptor (P2x7R) engagement and NLR pyrin family domain 3 (NLRP3) inflammasome activation. P2x7R or NLRP3 knockout (KO) donor MDSCs provided significantly higher survival than wild-type (WT) MDSCs. Although in vivo pharmacologic targeting of NLRP3 or P2x7R promoted recipient survival, indicating in vivo biologic effects, no synergistic survival advantage was seen when combined with MDSCs. Because activated inflammasomes release mature interleukin-1ß (IL-1ß), we expected that IL-1ß KO donor MDSCs would be superior in subverting GVHD, but such MDSCs proved inferior relative to WT. IL-1ß release and IL-1 receptor expression was required for optimal MDSC function, and exogenous IL-1ß added to suppression assays that included MDSCs increased suppressor potency. These data indicate that prolonged systemic NLRP3 inflammasome inhibition and decreased IL-1ß could diminish survival in GVHD. However, loss of inflammasome activation and IL-1ß release restricted to MDSCs rather than systemic inhibition allowed non-MDSC IL-1ß signaling, improving survival. Extracellular ATP catalysis with peritransplant apyrase administered into the peritoneum, the ATP release site, synergized with WT MDSCs, as did regulatory T-cell infusion, which we showed reduced but did not eliminate MDSC inflammasome activation, as assessed with a novel inflammasome reporter strain. These findings will inform future clinical using MDSCs to decrease alloresponses in inflammatory environments.


Subject(s)
Adenosine Triphosphate/metabolism , Graft vs Host Disease/immunology , Inflammasomes/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/transplantation , Animals , Female , Mice , Mice, Knockout
17.
Cytotherapy ; 23(7): 627-634, 2021 07.
Article in English | MEDLINE | ID: mdl-33980470

ABSTRACT

BACKGROUND AIMS: The use of natural killer (NK) cells as a cellular immunotherapy has increased over the past decade, specifically in patients with hematologic malignancies. NK cells have been used at the authors' institution for over 15 years. Most patients have a reaction to NK cell infusion. The authors retrospectively analyzed the reactions associated with NK cell infusions to characterize the types of reactions and investigate why some patients have higher-grade reactions than others. METHODS: A retrospective chart review of NK cell infusions was performed at the authors' institution under nine clinical protocols from 2008 to 2016. An infusion reaction was defined as any symptom from the time of NK cell infusion up to 4 h after infusion completion. The severity of infusion reactions was graded based on Common Terminology Criteria for Adverse Events, version 4. Two major endpoints of interest were (i) infusion reaction with any symptom and (ii) grade ≥3 infusion reaction. Multivariable logistic regression models were used to investigate the association between variables of interest and outcomes. Odds ratios (ORs) and 95% confidence intervals (CIs) were obtained for each variable. RESULTS: A total of 130 patients were receiving NK cell infusions at the authors' institution. The most common reported symptom was chills (n = 110, 85%), which were mostly grade 1 and 2, with only half of patients requiring intervention. There were 118 (91%) patients with infusion reactions, and only 36 (28%) were grade 3. There was one life-threatening grade 4 reaction, and no death was reported due to infusion reaction. Among grade ≥3 reactions, cardiovascular reactions (mainly hypertension) were the most common, and less than half of those with hypertension required intervention. NK cell dose was not associated with any of the grade 3 infusion reactions, whereas monocyte dose was associated with headache (grade ≤3, OR, 2.17, 95% CI, 1.19-3.97) and cardiovascular reaction (grade ≥3, OR, 2.13, 95% CI, 1.13-3.99). Cardiovascular reaction (grade ≥3) was also associated with in vitro IL-2 incubation and storage time. Additionally, there was no association between grade ≥3 infusion reactions and overall response rate (OR, 0.75, 95% CI, 0.29-1.95). CONCLUSIONS: The majority of patients who receive NK cell therapy experience grade 1 or 2 infusion reactions. Some patients experience grade 3 reactions, which are mainly cardiovascular, suggesting that close monitoring within the first 4 h is beneficial. The association of monocytes with NK cell infusion reaction relates to toxicities seen in adoptive T-cell therapy and needs further exploration.


Subject(s)
Immunotherapy , Killer Cells, Natural , Humans , Immunotherapy/adverse effects , Immunotherapy, Adoptive , Retrospective Studies
18.
Cytotherapy ; 23(8): 704-714, 2021 08.
Article in English | MEDLINE | ID: mdl-33893050

ABSTRACT

BACKGROUND AIMS: Adoptive transfer of suppressive CD4+CD25+ thymic regulatory T cells (tTregs) can control auto- and alloimmune responses but typically requires in vitro expansion to reach the target cell number for efficacy. Although the adoptive transfer of expanded tTregs purified from umbilical cord blood ameliorates graft-versus-host disease in patients receiving hematopoietic stem cell transplantation for lymphohematopoietic malignancy, individual Treg products of 100 × 106 cells/kg are manufactured over an extended 19-day time period using a process that yields variable products and is both laborious and costly. These limitations could be overcome with the availability of 'off the shelf' Treg. RESULTS: Previously, the authors reported a repetitive restimulation expansion protocol that maintains Treg phenotype (CD4+25++127-Foxp3+), potentially providing hundreds to thousands of patient infusions. However, repetitive stimulation of effector T cells induces a well-defined program of exhaustion that leads to reduced T-cell survival and function. Unexpectedly, the authors found that multiply stimulated human tTregs do not develop an exhaustion signature and instead maintain their Treg gene expression pattern. The authors also found that tTregs expanded with one or two rounds of stimulation and tTregs expanded with three or five rounds of stimulation preferentially express distinct subsets of a group of five transcription factors that lock in Treg Foxp3expression, Treg stability and suppressor function. Multiply restimulated Tregs also had increased transcripts characteristic of T follicular regulatory cells, a Treg subset. DISCUSSION: These data demonstrate that repetitively expanded human tTregs have a Treg-locking transcription factor with stable FoxP3 and without the classical T-cell exhaustion gene expression profile-desirable properties that support the possibility of off-the-shelf Treg therapeutics.


Subject(s)
Graft vs Host Disease , T-Lymphocytes, Regulatory , Adoptive Transfer , Fetal Blood , Forkhead Transcription Factors/genetics , Humans
19.
Mol Ther ; 28(1): 52-63, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31704085

ABSTRACT

Enhancing natural killer (NK) cell cytotoxicity by blocking inhibitory signaling could lead to improved NK-based cancer immunotherapy. Thus, we have developed a highly efficient method for editing the genome of human NK cells using CRISPR/Cas9 to knock out inhibitory signaling molecules. Our method efficiently edits up to 90% of primary peripheral blood NK cells. As a proof-of-principle we demonstrate highly efficient knockout of ADAM17 and PDCD1, genes that have a functional impact on NK cells, and demonstrate that these gene-edited NK cells have significantly improved activity, cytokine production, and cancer cell cytotoxicity. Furthermore, we were able to expand cells to clinically relevant numbers, without loss of activity. We also demonstrate that our CRISPR/Cas9 method can be used for efficient knockin of genes by delivering homologous recombination template DNA using recombinant adeno-associated virus serotype 6 (rAAV6). Our platform represents a feasible method for generating engineered primary NK cells as a universal therapeutic for cancer immunotherapy.


Subject(s)
Adoptive Transfer/methods , Cell Engineering/methods , Genetic Engineering/methods , Killer Cells, Natural/immunology , Ovarian Neoplasms/therapy , ADAM17 Protein/genetics , Animals , CRISPR-Cas Systems , Cytotoxicity, Immunologic/genetics , Dependovirus , Female , Gene Knockout Techniques , Healthy Volunteers , Humans , K562 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/pathology , Parvovirinae/genetics , Programmed Cell Death 1 Receptor/genetics , Treatment Outcome , Xenograft Model Antitumor Assays
20.
Semin Immunol ; 31: 64-75, 2017 06.
Article in English | MEDLINE | ID: mdl-28882429

ABSTRACT

Natural killer (NK) cells have long been known to mediate anti-tumor responses without prior sensitization or recognition of specific tumor antigens. However, the tumor microenvironment can suppress NK cell function resulting in tumor escape and disease progression. Despite recent advances in cytokine therapy and NK cell adoptive transfer, tumor expression of ligands to NK - expressed checkpoint receptors can still suppress NK mediated tumor lysis. This review will explore many of the checkpoint receptors tumors utilize to manipulate the NK cell response as well as some of the current and upcoming pharmacological solutions to limit tumor suppression of NK cell function. Furthermore, we will discuss the potential to use these drugs in combinational therapies with novel antibody reagents such as bi- and tri-specific killer engagers (BiKEs and TriKEs) against tumor-specific antigens to enhance NK cell-mediated tumor rejection.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Cancer Vaccines/immunology , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Animals , Combined Modality Therapy , Costimulatory and Inhibitory T-Cell Receptors/immunology , Cytotoxicity, Immunologic , Humans , Killer Cells, Natural/transplantation , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL