Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Publication year range
1.
MMWR Morb Mortal Wkly Rep ; 73(4): 77-83, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300853

ABSTRACT

On September 12, 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (updated) COVID-19 vaccination with a monovalent XBB.1.5-derived vaccine for all persons aged ≥6 months to prevent COVID-19, including severe disease. During fall 2023, XBB lineages co-circulated with JN.1, an Omicron BA.2.86 lineage that emerged in September 2023. These variants have amino acid substitutions that might increase escape from neutralizing antibodies. XBB lineages predominated through December 2023, when JN.1 became predominant in the United States. Reduction or failure of spike gene (S-gene) amplification (i.e., S-gene target failure [SGTF]) in real-time reverse transcription-polymerase chain reaction testing is a time-dependent, proxy indicator of JN.1 infection. Data from the Increasing Community Access to Testing SARS-CoV-2 pharmacy testing program were analyzed to estimate updated COVID-19 vaccine effectiveness (VE) (i.e., receipt versus no receipt of updated vaccination) against symptomatic SARS-CoV-2 infection, including by SGTF result. Among 9,222 total eligible tests, overall VE among adults aged ≥18 years was 54% (95% CI = 46%-60%) at a median of 52 days after vaccination. Among 2,199 tests performed at a laboratory with SGTF testing, VE 60-119 days after vaccination was 49% (95% CI = 19%-68%) among tests exhibiting SGTF and 60% (95% CI = 35%-75%) among tests without SGTF. Updated COVID-19 vaccines provide protection against symptomatic infection, including against currently circulating lineages. CDC will continue monitoring VE, including for expected waning and against severe disease. All persons aged ≥6 months should receive an updated COVID-19 vaccine dose.


Subject(s)
COVID-19 Vaccines , COVID-19 , United States/epidemiology , Adult , Humans , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Vaccine Efficacy , SARS-CoV-2
2.
MMWR Morb Mortal Wkly Rep ; 72(7): 177-182, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36795625

ABSTRACT

On June 18, 2022, the Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for use of the 2-dose monovalent Moderna COVID-19 vaccine as a primary series for children aged 6 months-5 years* and the 3-dose monovalent Pfizer-BioNTech COVID-19 vaccine as a primary series for children aged 6 months-4 years,† based on safety, immunobridging, and limited efficacy data from clinical trials (1-3). Monovalent mRNA vaccine effectiveness (VE) against symptomatic SARS-CoV-2 infection was evaluated using the Increasing Community Access to Testing (ICATT) program, which provides SARS-CoV-2 testing to persons aged ≥3 years at pharmacy and community-based testing sites nationwide§ (4,5). Among children aged 3-5 years with one or more COVID-19-like illness symptoms¶ for whom a nucleic acid amplification test (NAAT) was performed during August 1, 2022-February 5, 2023, VE of 2 monovalent Moderna doses (complete primary series) against symptomatic infection was 60% (95% CI = 49% to 68%) 2 weeks-2 months after receipt of the second dose and 36% (95% CI = 15% to 52%) 3-4 months after receipt of the second dose. Among symptomatic children aged 3-4 years with NAATs performed during September 19, 2022-February 5, 2023, VE of 3 monovalent Pfizer-BioNTech doses (complete primary series) against symptomatic infection was 31% (95% CI = 7% to 49%) 2 weeks-4 months after receipt of the third dose; statistical power was not sufficient to estimate VE stratified by time since receipt of the third dose. Complete monovalent Moderna and Pfizer-BioNTech primary series vaccination provides protection for children aged 3-5 and 3-4 years, respectively, against symptomatic infection for at least the first 4 months after vaccination. CDC expanded recommendations for use of updated bivalent vaccines to children aged ≥6 months on December 9, 2022 (6), which might provide increased protection against currently circulating SARS-CoV-2 variants (7,8). Children should stay up to date with recommended COVID-19 vaccines, including completing the primary series; those who are eligible should receive a bivalent vaccine dose.


Subject(s)
COVID-19 , Child , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Vaccines , 2019-nCoV Vaccine mRNA-1273 , COVID-19 Testing , mRNA Vaccines , Vaccines, Combined
3.
MMWR Morb Mortal Wkly Rep ; 72(5): 119-124, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36730051

ABSTRACT

The SARS-CoV-2 Omicron sublineage XBB was first detected in the United States in August 2022.* XBB together with a sublineage, XBB.1.5, accounted for >50% of sequenced lineages in the Northeast by December 31, 2022, and 52% of sequenced lineages nationwide as of January 21, 2023. COVID-19 vaccine effectiveness (VE) can vary by SARS-CoV-2 variant; reduced VE has been observed against some variants, although this is dependent on the health outcome of interest. The goal of the U.S. COVID-19 vaccination program is to prevent severe disease, including hospitalization and death (1); however, VE against symptomatic infection can provide useful insight into vaccine protection against emerging variants in advance of VE estimates against more severe disease. Data from the Increasing Community Access to Testing (ICATT) national pharmacy program for SARS-CoV-2 testing were analyzed to estimate VE of updated (bivalent) mRNA COVID-19 vaccines against symptomatic infection caused by BA.5-related and XBB/XBB.1.5-related sublineages among immunocompetent adults during December 1, 2022­January 13, 2023. Reduction or failure of spike gene (S-gene) amplification (SGTF) in real-time reverse transcription­polymerase chain reaction (RT-PCR) was used as a proxy indicator of infection with likely BA.5-related sublineages and S-gene target presence (SGTP) of infection with likely XBB/XBB.1.5-related sublineages (2). Among 29,175 nucleic acid amplification tests (NAATs) with SGTF or SGTP results available from adults who had previously received 2­4 monovalent COVID-19 vaccine doses, the relative VE of a bivalent booster dose given 2­3 months earlier compared with no bivalent booster in persons aged 18­49 years was 52% against symptomatic BA.5 infection and 48% against symptomatic XBB/XBB.1.5 infection. As new SARS-CoV-2 variants emerge, continued vaccine effectiveness monitoring is important. Bivalent vaccines appear to provide additional protection against symptomatic BA.5-related sublineage and XBB/XBB.1.5-related sublineage infections in persons who had previously received 2, 3, or 4 monovalent vaccine doses. All persons should stay up to date with recommended COVID-19 vaccines, including receiving a bivalent booster dose when they are eligible.


Subject(s)
COVID-19 , Adult , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Vaccines, Combined , COVID-19 Testing , Vaccine Efficacy , RNA, Messenger
4.
MMWR Morb Mortal Wkly Rep ; 71(48): 1526-1530, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36454688

ABSTRACT

On September 1, 2022, bivalent COVID-19 mRNA vaccines, composed of components from the SARS-CoV-2 ancestral and Omicron BA.4/BA.5 strains, were recommended by the Advisory Committee on Immunization Practices (ACIP) to address reduced effectiveness of COVID-19 monovalent vaccines during SARS-CoV-2 Omicron variant predominance (1). Initial recommendations included persons aged ≥12 years (Pfizer-BioNTech) and ≥18 years (Moderna) who had completed at least a primary series of any Food and Drug Administration-authorized or -approved monovalent vaccine ≥2 months earlier (1). On October 12, 2022, the recommendation was expanded to include children aged 5-11 years. At the time of recommendation, immunogenicity data were available from clinical trials of bivalent vaccines composed of ancestral and Omicron BA.1 strains; however, no clinical efficacy data were available. In this study, effectiveness of the bivalent (Omicron BA.4/BA.5-containing) booster formulation against symptomatic SARS-CoV-2 infection was examined using data from the Increasing Community Access to Testing (ICATT) national SARS-CoV-2 testing program.* During September 14-November 11, 2022, a total of 360,626 nucleic acid amplification tests (NAATs) performed at 9,995 retail pharmacies for adults aged ≥18 years, who reported symptoms consistent with COVID-19 at the time of testing and no immunocompromising conditions, were included in the analysis. Relative vaccine effectiveness (rVE) of a bivalent booster dose compared with that of ≥2 monovalent vaccine doses among persons for whom 2-3 months and ≥8 months had elapsed since last monovalent dose was 30% and 56% among persons aged 18-49 years, 31% and 48% among persons aged 50-64 years, and 28% and 43% among persons aged ≥65 years, respectively. Bivalent mRNA booster doses provide additional protection against symptomatic SARS-CoV-2 in immunocompetent persons who previously received monovalent vaccine only, with relative benefits increasing with time since receipt of the most recent monovalent vaccine dose. Staying up to date with COVID-19 vaccination, including getting a bivalent booster dose when eligible, is critical to maximizing protection against COVID-19 (1).


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Child , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , mRNA Vaccines , RNA, Messenger , United States/epidemiology , Vaccines, Combined
5.
MMWR Morb Mortal Wkly Rep ; 70(49): 1706-1711, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34882655

ABSTRACT

Immediately following the March 13, 2020 declaration of COVID-19 as a national emergency (1), the U.S. government began implementing national testing programs for epidemiologic surveillance, monitoring of frontline workers and populations at higher risk for acquiring COVID-19, and identifying and allocating limited testing resources. Effective testing supports identification of COVID-19 cases; facilitates isolation, quarantine, and timely treatment measures that limit the spread of SARS-CoV-2 (the virus that causes COVID-19); and guides public health officials about the incidence of COVID-19 in a community. A White House Joint Task Force, co-led by the Department of Health and Human Services (HHS) and the Federal Emergency Management Agency (FEMA), created the Community-Based Testing Sites (CBTS) program working with state and local partners (2). This report describes the timeline, services delivered, and scope of the CBTS program. During March 19, 2020-April 11, 2021, the CBTS program conducted 11,661,923 SARS-CoV-2 tests at 8,319 locations across the United States and its territories, including 402,223 (3.5%) administered through Drive-Through Testing, 10,129,142 (86.9%) through Pharmacies+ Testing, and 1,130,558 (9.7%) through Surge Testing programs. Tests administered through the CBTS program yielded 1,176,959 (10.1%) positive results for SARS-CoV-2. Among tested persons with available race data,* positive test results were highest among American Indian or Alaska Native (14.1%) and Black persons (10.4%) and lowest among White persons (9.9%), Asian persons (7.3%), and Native Hawaiian or Other Pacific Islanders (6.4%). Among persons with reported ethnicity, 25.3% were Hispanic, 15.9% of whom received a positive test result. Overall, 82.0% of test results were returned within 2 days, but the percentage of test results returned within 2 days was as low as 40.7% in July 2020 and 59.3% in December 2020 during peak testing periods. Strong partnerships enabled a rapid coordinated response to establish the federally supported CBTS program to improve access to no-charge diagnostic testing, including for frontline workers, symptomatic persons and close contacts, and persons living in high-prevalence areas. In April 2021, the CBTS Pharmacies+ Testing and Surge Testing programs were expanded into the Increasing Community Access to Testing (ICATT) program. As of November 12, 2021, the CBTS and ICATT programs conducted approximately 26.6 million tests with approximately 10,000 active testing sites. Although the CBTS program represented a relatively small portion of overall U.S. SARS-CoV-2 testing, with its successful partnerships and adaptability, the CBTS program serves as a model to guide current community-based screening, surveillance, and disease control programs, and responses to future public health emergencies.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , Community Health Services/organization & administration , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Cooperative Behavior , Female , Health Services Accessibility , Health Services Needs and Demand , Humans , Interinstitutional Relations , Male , Medically Underserved Area , Middle Aged , Program Evaluation , United States/epidemiology , Young Adult
6.
Appl Opt ; 60(1): 98-108, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362084

ABSTRACT

An optical parametric oscillator (OPO) is developed and characterized for the simultaneous generation of ultraviolet (UV) and near-UV nanosecond laser pulses for the single-shot Rayleigh scattering and planar laser-induced-fluorescence (PLIF) imaging of methylidyne (CH) and nitric oxide (NO) in turbulent flames. The OPO is pumped by a multichannel, 8-pulse Nd:YAG laser cluster that produces up to 225 mJ/pulse at 355 nm with pulse spacing of 100 µs. The pulsed OPO has a conversion efficiency of 9.6% to the signal wavelength of ∼430nm when pumped by the multimode laser. Second harmonic conversion of the signal, with 3.8% efficiency, is used for the electronic excitation of the A-X (1,0) band of NO at ∼215nm, while the residual signal at 430 nm is used for direct excitation of the A-X (0,0) band of the CH radical and elastic Rayleigh scattering. The section of the OPO signal wavelength for simultaneous CH and NO PLIF imaging is performed with consideration of the pulse energy, interference from the reactant and product species, and the fluorescence signal intensity. The excitation wavelengths of 430.7 nm and 215.35 nm are studied in a laminar, premixed CH4-H2-NH3-air flame. Single-shot CH and NO PLIF and Rayleigh scatter imaging is demonstrated in a turbulent CH4-H2-NH3 diffusion flame using a high-speed intensified CMOS camera. Analysis of the complementary Rayleigh scattering and CH and NO PLIF enables identification and quantification of the high-temperature flame layers, the combustion product zones, and the fuel-jet core. Considerations for extension to simultaneous, 10-kHz-rate acquisition are discussed.

7.
Opt Express ; 28(25): 37811-37826, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379609

ABSTRACT

In this work, a variable-pulse-oscillator is developed and coupled with a burst-mode amplifier for generation of high-energy laser pulses with width of 100 ps to 1 ms and near-Gaussian temporal pulse shape. Pulse energy as high as 600 mJ is demonstrated at 1064 nm, with a super-Gaussian spatial profile and beam quality as good as 1.6 times the diffraction limit. A time-dependent pulse amplification model is developed and is in general agreement with experimentally measured values of output pulse energy and temporal pulse shape of the amplified pulses. Key performance parameters (pulse energy, temporal pulse shape, and spatial beam profile and quality) are analyzed as a function of pulse width across seven orders of magnitude. Additionally, the model is used to elucidate deviations between the simulated and experimental data, showing that the relationship between pulse width and output pulse energy is dominated by the variable-pulse-width oscillator performance, not the burst-mode amplifier.

8.
J Clin Microbiol ; 57(8)2019 08.
Article in English | MEDLINE | ID: mdl-31142608

ABSTRACT

Quality standards as part of an effective quality management system (QMS) are the cornerstone for generating high-quality test results. Next-generation sequencing (NGS) has the potential to improve both clinical diagnostics and public health surveillance efforts in multiple areas, including infectious diseases. However, the laboratories adopting NGS methods face significant challenges due to the complex and modular process design. This document summarizes the first phase of quality system guidance developed by the Centers for Disease Control and Prevention (CDC) NGS Quality Workgroup. The quality system essentials of personnel, equipment, and process management (quality control and validation) were prioritized based on a risk assessment using information gathered from participating CDC laboratories. Here, we present a prioritized QMS framework, including procedures and documentation tools, to assist laboratory implementation and maintenance of quality practices for NGS workflows.


Subject(s)
High-Throughput Nucleotide Sequencing/instrumentation , Laboratories/standards , Public Health/methods , Quality Assurance, Health Care/standards , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Guidelines as Topic , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/standards , Public Health/standards , Quality Assurance, Health Care/organization & administration , Surveys and Questionnaires , Workflow
9.
Opt Lett ; 43(5): 1115-1118, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489807

ABSTRACT

Planar laser-induced fluorescence (PLIF) of hydroxyl (OH) and formaldehyde (CH2O) radicals was performed alongside stereo particle image velocimetry (PIV) at a 20 kHz repetition rate in a highly turbulent Bunsen flame. A dual-pulse burst-mode laser generated envelopes of 532 nm pulse pairs for PIV as well as a pair of 355 nm pulses, the first of which was used for CH2O PLIF. A diode-pumped solid-state Nd:YAG/dye laser system produced the excitation beam for the OH PLIF. The combined diagnostics produced simultaneous, temporally resolved two-dimensional fields of OH and CH2O and two-dimensional, three-component velocity fields, facilitating the observation of the interaction of fluid dynamics with flame fronts and preheat layers. The high-fidelity data acquired surpass the previous state of the art and demonstrate dual-pulse burst-mode laser technology with the ability to provide pulse pairs at both 532 and 355 nm with sufficient energy for scattering and fluorescence measurement at 20 kHz.

10.
Proc Natl Acad Sci U S A ; 112(10): 3050-5, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25713354

ABSTRACT

CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response. Here we address this issue by quantifying viral load and the CD8 T-cell response in a cohort of 80 individuals immunized with the live attenuated yellow fever vaccine (YFV-17D) by sampling peripheral blood at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90. When the virus load was below a threshold (peak virus load < 225 genomes per mL, or integrated virus load < 400 genome days per mL), the magnitude of the CD8 T-cell response correlated strongly with the virus load (R(2) ∼ 0.63). As the virus load increased above this threshold, the magnitude of the CD8 T-cell responses saturated. Recent advances in CD8 T-cell-based vaccines have focused on replication-incompetent or single-cycle vectors. However, these approaches deliver relatively limited amounts of antigen after immunization. Our results highlight the requirement that T-cell-based vaccines should deliver sufficient antigen during the initial period of the immune response to elicit a large number of CD8 T cells that may be needed for protection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Viral Load , Yellow Fever Vaccine/immunology , Cohort Studies , Gene Expression Profiling , Humans , Yellow fever virus/genetics , Yellow fever virus/immunology , Yellow fever virus/isolation & purification
11.
Opt Lett ; 42(1): 53-56, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28059176

ABSTRACT

See-through-wall coherent microwave scattering from resonance-enhanced multiphoton ionization (REMPI) for rotational temperature measurements of molecular oxygen has been developed and demonstrated in a flow reactor at atmospheric pressure. Through limited, single-ended optical access, a laser beam was focused to generate local ionization of molecular oxygen in a heated quartz flow reactor enclosed by ceramic heating elements. Coherent microwaves were transmitted, and the subsequent scattering off the laser-induced plasma was received, through the optically opaque ceramic heater walls and used to acquire rotational spectra of molecular oxygen and to determine temperature. Both axial and radial air-temperature profiles were obtained in the flow reactor with an accuracy of ±20 K⁢(±5%). The experimental results show good agreement with a steady-state computational heat transfer model. This technique shows great potential for non-invasive, high-fidelity measurement of spatially localized temperature and radical species concentration in combustion kinetic experiments and confined combustors constructed of advanced ceramic materials in which limited or non-existing optical access hinders usage of conventional optical diagnostic techniques to quantify thermal non-uniformity.

12.
Opt Lett ; 42(18): 3678-3681, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28914931

ABSTRACT

Two-dimensional (2D) Raman scattering at 10 kHz in non-reacting flow mixtures is demonstrated by employing a burst-mode laser with a long-duration pulse of about 70 ns and pulse energy of about 750 mJ at 532 nm. To avoid optical breakdown, the pulse width of the laser was varied in the range of 10-1000 ns. The effects of pulse shape, pulse energy, and harmonic conversion on 2D measurements are also studied. The applications of high-speed, single-shot, 2D imaging of CH4 and H2 jets in N2 at elevated pressures are demonstrated. In addition, the scalar dissipation rate of CH4 in N2 at 20 bar is determined, and multi-dimensional, multi-species, high-speed imaging of flows at elevated pressures is demonstrated.

13.
Immunity ; 28(5): 710-22, 2008 May.
Article in English | MEDLINE | ID: mdl-18468462

ABSTRACT

To explore the human T cell response to acute viral infection, we performed a longitudinal analysis of CD8(+) T cells responding to the live yellow fever virus and smallpox vaccines--two highly successful human vaccines. Our results show that both vaccines generated a brisk primary effector CD8(+) T cell response of substantial magnitude that could be readily quantitated with a simple set of four phenotypic markers. Secondly, the vaccine-induced T cell response was highly specific with minimal bystander effects. Thirdly, virus-specific CD8(+) T cells passed through an obligate effector phase, contracted more than 90% and gradually differentiated into long-lived memory cells. Finally, these memory cells were highly functional and underwent a memory differentiation program distinct from that described for human CD8(+) T cells specific for persistent viruses. These results provide a benchmark for CD8(+) T cell responses induced by two of the most effective vaccines ever developed.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Smallpox Vaccine/immunology , T-Lymphocyte Subsets/immunology , Yellow Fever Vaccine/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Lymphocyte Activation , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Vaccination , Vaccinia virus/immunology , Yellow Fever Vaccine/metabolism
14.
Appl Opt ; 56(21): 6029-6034, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-29047927

ABSTRACT

A fiber-coupled, hyperspectral imaging sensor (HSIS) ranging from ultraviolet (UV) to short-wavelength-infrared (SWIR) wavelengths is developed for remote detection of planar [two-dimensional (2D)], spectrally resolved flame emission. The key component of the sensor is a dimension-reduction 2D-to-1D (one-dimensional) fiber-optic array that contains 1024 fibers and features high-UV optical transmission (>30% transmission at 310-340 nm, >90% at 340-2000 nm), wide operational wavelengths (300-2400 nm), and a compact and robust design (full length <5 cm). The flame-emission signals are transmitted to the remote HSIS through a 3-m-long, UV-grade, imaging fiber bundle that consists of 30,000 single-mode fibers. The design of the 2D-to-1D fiber array, the fiber-characterization process, and the sensor development are discussed in detail. 2D spectrally resolved measurements of CH*, OH*, and C2* distribution are made in premixed laminar flames. Improved chemiluminescence-based fuel/air ratio measurements using spectrally resolved detection are demonstrated. The results of the current study indicate that implementation of fiber-coupled HSIS is feasible in practical gas-turbine-engine test facilities with limited optical access.

15.
Opt Express ; 24(22): 24971-24979, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27828437

ABSTRACT

Two-dimensional gas-phase coherent anti-Stokes Raman scattering (2D-CARS) thermometry is demonstrated at 1 kHz in a heated jet. A hybrid femtosecond/picosecond CARS configuration is used in a two-beam phase-matching arrangement with a 100-femtosecond pump/Stokes pulse and a 107-picosecond probe pulse. The femtosecond pulse is generated using a mode-locked oscillator and regenerative amplifier that is synchronized to a separate picosecond oscillator and burst-mode amplifier. The CARS signal is spectrally dispersed in a custom imaging spectrometer and detected using a high-speed camera with image intensifier. 1-kHz, single-shot planar measurements at room temperature exhibit error of 2.6% and shot-to-shot variations of 2.6%. The spatial variation in measured temperature is 9.4%. 2D-CARS temperature measurements are demonstrated in a heated O2 jet to capture the spatiotemporal evolution of the temperature field.

16.
Opt Lett ; 39(23): 6608-11, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25490633

ABSTRACT

A method for simultaneous ro-vibrational and pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is presented for multi-species detection and improved temperature sensitivity from room temperature to flame conditions. N2/CH4 vibrational and N2/O2/H2 rotational Raman coherences are excited simultaneously using fs pump pulses at 660 and 798 nm, respectively, and a common fs Stokes pulse at 798 nm. A fourth narrowband 798 nm ps pulse probes all coherence states at a time delay that minimizes nonresonant background and the effects of collisions. The transition strength is concentration dependent, while the distribution among observed transitions is related to temperature through the Boltzmann distribution. The broadband excitation pulses and multiplexed signal are demonstrated for accurate thermometry from 298 to 2400 K and concentration measurements of four key combustion species.

17.
Opt Lett ; 39(16): 4735-8, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25121861

ABSTRACT

The burst duration of an all-diode-pumped burst-mode laser is extended to 100 ms and 100 kHz (10,000 pulses) by utilizing dual-wavelength diode pumping. Total energies of 225 J at 10 kHz and 400 J at 100 kHz are achieved during the 100 ms burst period at 1064 nm. This represents an order-of-magnitude increase in the number of pulses compared with prior work, while maintaining similar or higher pulse energies. Amplitude tailoring of each pulse is used to flatten the burst profile, reducing the standard deviation in pulse energy over the 100 ms burst from 3.7% to 2.1% with a burst-to-burst standard deviation of 0.8%.

18.
Opt Lett ; 39(4): 739-42, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24562194

ABSTRACT

High-repetition-rate, burst-mode lasers can achieve higher energies per pulse compared with continuously pulsed systems, but the relatively few number of laser pulses in each burst has limited the temporal dynamic range of measurements in unsteady flames. A fivefold increase in the range of timescales that can be resolved by burst-mode laser-based imaging systems is reported in this work by extending a hybrid diode- and flashlamp-pumped Nd:YAG-based amplifier system to nearly 1000 pulses at 100 kHz during a 10 ms burst. This enables an unprecedented burst-mode temporal dynamic range to capture turbulent fluctuations from 0.1 to 50 kHz in flames of practical interest. High pulse intensity enables efficient conversion to the ultraviolet for planar laser-induced fluorescence imaging of nascent formaldehyde and other potential flame radicals.

19.
Opt Lett ; 39(22): 6462-5, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25490494

ABSTRACT

A high-speed, master-oscillator power-amplifier burst-mode laser with ∼100 ps pulse duration is demonstrated with output energy up to 110 J per burst at 1064 nm and second-harmonic conversion efficiency up to 67% in a KD*P crystal. The output energy is distributed across 100 to 10,000 sequential laser pulses, with 10 kHz to 1 MHz repetition rate, respectively, over 10 ms burst duration. The performance of the 100 ps burst-mode laser is evaluated and been found to compare favorably with that of a similar design that employs a conventional ∼8 ns pulse duration. The nearly transform-limited spectral bandwidth of 0.15 cm(-1) at 532 nm is ideal for a wide range of linear and nonlinear spectroscopic techniques, and the 100 picosecond pulse duration is optimal for fiber-coupled spectroscopic measurements in harsh reacting-flow environments.

20.
J Chem Phys ; 140(2): 024316, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24437886

ABSTRACT

The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

SELECTION OF CITATIONS
SEARCH DETAIL