Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 586
Filter
Add more filters

Publication year range
1.
Brain ; 147(4): 1344-1361, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37931066

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is a CNS autoimmune inflammatory disease mediated by T helper 17 (Th17) and antibody responses to the water channel protein, aquaporin 4 (AQP4), and associated with astrocytopathy, demyelination and axonal loss. Knowledge about disease pathogenesis is limited and the search for new therapies impeded by the absence of a reliable animal model. In our work, we determined that NMOSD is characterized by decreased IFN-γ receptor signalling and that IFN-γ depletion in AQP4201-220-immunized C57BL/6 mice results in severe clinical disease resembling human NMOSD. Pathologically, the disease causes autoimmune astrocytic and CNS injury secondary to cellular and humoral inflammation. Immunologically, the absence of IFN-γ allows for increased expression of IL-6 in B cells and activation of Th17 cells, and generation of a robust autoimmune inflammatory response. Consistent with NMOSD, the experimental disease is exacerbated by administration of IFN-ß, whereas repletion of IFN-γ, as well as therapeutic targeting of IL-17A, IL-6R and B cells, ameliorates it. We also demonstrate that immune tolerization with AQP4201-220-coupled poly(lactic-co-glycolic acid) nanoparticles could both prevent and effectively treat the disease. Our findings enhance the understanding of NMOSD pathogenesis and provide a platform for the development of immune tolerance-based therapies, avoiding the limitations of the current immunosuppressive therapies.


Subject(s)
Neuromyelitis Optica , Humans , Animals , Mice , Neuromyelitis Optica/pathology , Aquaporin 4 , Interferon-gamma/metabolism , Mice, Inbred C57BL , B-Lymphocytes , Autoantibodies/metabolism
2.
J Allergy Clin Immunol ; 153(3): 549-559, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37926124

ABSTRACT

Food allergy is a growing public health issue among children and adults that can lead to life-threatening anaphylaxis following allergen exposure. The criterion standard for disease management includes food avoidance and emergency epinephrine administration because current allergen-specific immunotherapy treatments are limited by adverse events and unsustained desensitization. A promising approach to remedy these shortcomings is the use of nanoparticle-based therapies that disrupt disease-driving immune mechanisms and induce more sustained tolerogenic immune pathways. The pathophysiology of food allergy includes multifaceted interactions between effector immune cells, including lymphocytes, antigen-presenting cells, mast cells, and basophils, mainly characterized by a TH2 cell response. Regulatory T cells, TH1 cell responses, and suppression of other major allergic effector cells have been found to be major drivers of beneficial outcomes in these nanoparticle therapies. Engineered nanoparticle formulations that have shown efficacy at reducing allergic responses and revealed new mechanisms of tolerance include polymeric-, lipid-, and emulsion-based nanotherapeutics. This review highlights the recent engineering design of these nanoparticles, the mechanisms induced by them, and their future potential therapeutic targets.


Subject(s)
Food Hypersensitivity , Nanoparticles , Child , Adult , Humans , Desensitization, Immunologic , Food , Allergens
3.
J Neuroinflammation ; 21(1): 144, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822334

ABSTRACT

Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-ß or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-ß and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-ß-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-ß. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.


Subject(s)
CD11b Antigen , Encephalomyelitis, Autoimmune, Experimental , Interferon-gamma , Mice, Inbred C57BL , Myeloid Cells , Spleen , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Interferon-gamma/metabolism , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Spleen/immunology , CD11b Antigen/metabolism , Female , Myelin-Oligodendrocyte Glycoprotein/toxicity , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Transforming Growth Factor beta/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Forkhead Transcription Factors/metabolism , Disease Models, Animal
4.
J Immunol ; 209(3): 465-475, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35725270

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease characterized by T and B cell responses to proteins expressed by insulin-producing pancreatic ß cells, inflammatory lesions within islets (insulitis), and ß cell loss. We previously showed that Ag-specific tolerance targeting single ß cell protein epitopes is effective in preventing T1D induced by transfer of monospecific diabetogenic CD4 and CD8 transgenic T cells to NOD.scid mice. However, tolerance induction to individual diabetogenic proteins, for example, GAD65 (glutamic acid decarboxylase 65) or insulin, has failed to ameliorate T1D both in wild-type NOD mice and in the clinic. Initiation and progression of T1D is likely due to activation of T cells specific for multiple diabetogenic epitopes. To test this hypothesis, recombinant insulin, GAD65, and chromogranin A proteins were encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (COUR CNPs) to assess regulatory T cell induction, inhibition of Ag-specific T cell responses, and blockade of T1D induction/progression in NOD mice. Whereas treatment of NOD mice with CNPs containing a single protein inhibited the corresponding Ag-specific T cell response, inhibition of overt T1D development only occurred when all three diabetogenic proteins were included within the CNPs (CNP-T1D). Blockade of T1D following CNP-T1D tolerization was characterized by regulatory T cell induction and a significant decrease in both peri-insulitis and immune cell infiltration into pancreatic islets. As we have recently published that CNP treatment is both safe and induced Ag-specific tolerance in a phase 1/2a celiac disease clinical trial, Ag-specific tolerance induced by nanoparticles encapsulating multiple diabetogenic proteins is a promising approach to T1D treatment.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Nanoparticles , Animals , Diabetes Mellitus, Experimental/pathology , Epitopes , Insulin , Mice , Mice, Inbred NOD , Mice, SCID , Proteins
5.
Plant J ; 111(4): 1069-1080, 2022 08.
Article in English | MEDLINE | ID: mdl-35727866

ABSTRACT

Genetic compensation has been proposed to explain phenotypic differences between gene knockouts and knockdowns in several metazoan and plant model systems. With the rapid development of reverse genetic tools such as CRISPR/Cas9 and RNAi in microalgae, it is increasingly important to assess whether genetic compensation affects the phenotype of engineered algal mutants. While exploring triacylglycerol (TAG) biosynthesis pathways in the model alga Chlamydomonas reinhardtii, it was discovered that knockout of certain genes catalyzing rate-limiting steps of TAG biosynthesis, type-2 diacylglycerol acyltransferase genes (DGTTs), triggered genetic compensation under abiotic stress conditions. Genetic compensation of a DGTT1 null mutation by a related PDAT gene was observed regardless of the strain background or mutagenesis approach, for example, CRISPR/Cas 9 or insertional mutagenesis. However, no compensation was found in the PDAT knockout mutant. The effect of PDAT knockout was evaluated in a Δvtc1 mutant, in which PDAT was upregulated under stress, resulting in a 90% increase in TAG content. Knockout of PDAT in the Δvtc1 background induced a 12.8-fold upregulation of DGTT1 and a 272.3% increase in TAG content in Δvtc1/pdat1 cells, while remaining viable. These data suggest that genetic compensation contributes to the genetic robustness of microalgal TAG biosynthetic pathways, maintaining lipid and redox homeostasis in the knockout mutants under abiotic stress. This work demonstrates examples of genetic compensation in microalgae, implies the physiological relevance of genetic compensation in TAG biosynthesis under stress, and provides guidance for future genetic engineering and mutant characterization efforts.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Animals , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Diacylglycerol O-Acyltransferase/genetics , Microalgae/genetics , Microalgae/metabolism , Plants/metabolism , Triglycerides/metabolism
6.
Biotechnol Bioeng ; 120(1): 284-296, 2023 01.
Article in English | MEDLINE | ID: mdl-36221192

ABSTRACT

Immune-mediated hypersensitivities such as autoimmunity, allergy, and allogeneic graft rejection are treated with therapeutics that suppress the immune system, and the lack of specificity is associated with significant side effects. The delivery of disease-relevant antigens (Ags) by carrier systems such as poly(lactide-co-glycolide) nanoparticles (PLG-Ag) and carbodiimide (ECDI)-fixed splenocytes (SP-Ag) has demonstrated Ag-specific tolerance induction in model systems of these diseases. Despite therapeutic outcomes by both platforms, tolerance is conferred with different efficacy. This investigation evaluated Ag loading and total particle dose of PLG-Ag on Ag presentation in a coculture system of dendritic cells (DCs) and Ag-restricted T cells, with SP-Ag employed as a control. CD25 expression was observed in nearly all T cells even at low concentrations of PLG-Ag, indicating efficient presentation of Ag by dendritic cells. However, the secretion of IL-2, Th1, and Th2 cytokines (IFNγ and IL-4, respectively) varied depending on PLG-Ag concentration and Ag loading. Concentration escalation of soluble Ag resulted in an increase in IL-2 and IFNγ and a decrease in IL-4. Treatment with PLG-Ag followed a similar trend but with lower levels of IL-2 and IFNγ secreted. Transcriptional Activity CEll ARrays (TRACER) were employed to measure the real-time transcription factor (TF) activity in Ag-presenting DCs. The kinetics and magnitude of TF activity was dependent on the Ag delivery method, concentration, and Ag loading. Ag positively regulated IRF1 activity and, as carriers, NPs and ECDI-treated SP negatively regulated this signaling. The effect of Ag loading and dose on tolerance induction were corroborated in vivo using the delayed-type hypersensitivity (DTH) and experimental autoimmune encephalomyelitis (EAE) mouse models where a threshold of 8 µg/mg Ag loading and 0.5 mg PLG-Ag dose were required for tolerance. Together, the effect of Ag loading and dosing on in vitro and in vivo immune regulation provide useful insights for translating Ag-carrier systems for the clinical treatment of immune disorders.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Nanoparticles , Animals , Mice , T-Lymphocytes , Interleukin-2 , Interleukin-4/therapeutic use , Antigens , Encephalomyelitis, Autoimmune, Experimental/drug therapy
7.
Biomacromolecules ; 24(1): 166-177, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36542819

ABSTRACT

The reductive amination of dialdehyde cellulose (DAC) with 2-picoline borane was investigated for its applicability in the generation of bioderived thermoplastics. Five primary amines, both aliphatic and aromatic, were introduced to the cellulose backbone. The influences of the side chains on the course of the reaction were examined by various analytical techniques with microcrystalline cellulose as a model compound. The obtained insights were transferred to a 39%-oxidized softwood kraft pulp to study the thermal properties of thereby generated high-molecular-weight thermoplastics. The number-average molecular weights (Mn) of the diamine celluloses, ranging from 60 to 82 kD, were investigated by gel permeation chromatography. The diamine celluloses exhibited glass transition temperatures (Tg) from 71 to 112 °C and were stable at high temperatures. Diamine cellulose generated from aniline and DAC showed the highest conversion, the highest Tg (112 °C), and a narrow molecular weight distribution (D̵ of 1.30).


Subject(s)
Amines , Cellulose , Amination , Amines/chemistry , Cellulose/chemistry , Diamines
8.
Genet Sel Evol ; 55(1): 3, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658485

ABSTRACT

BACKGROUND: Longitudinal records of temperament can be used for assessing behavioral plasticity, such as aptness to learn, memorize, or change behavioral responses based on affective state. In this study, we evaluated the phenotypic and genomic background of North American Angus cow temperament measured throughout their lifetime around the weaning season, including the development of a new indicator trait termed docility-based learning and behavioral plasticity. The analyses included 273,695 and 153,898 records for yearling (YT) and cow at weaning (CT) temperament, respectively, 723,248 animals in the pedigree, and 8784 genotyped animals. Both YT and CT were measured when the animal was loading into/exiting the chute. Moreover, CT was measured around the time in which the cow was separated from her calf. A random regression model fitting a first-order Legendre orthogonal polynomial was used to model the covariance structure of temperament and to assess the learning and behavioral plasticity (i.e., slope of the regression) of individual cows. This study provides, for the first time, a longitudinal perspective of the genetic and genomic mechanisms underlying temperament, learning, and behavioral plasticity in beef cattle. RESULTS: CT measured across years is heritable (0.38-0.53). Positive and strong genetic correlations (0.91-1.00) were observed among all CT age-group pairs and between CT and YT (0.84). Over 90% of the candidate genes identified overlapped among CT age-groups and the estimated effect of genomic markers located within important candidate genes changed over time. A small but significant genetic component was observed for learning and behavioral plasticity (heritability = 0.02 ± 0.002). Various candidate genes were identified, revealing the polygenic nature of the traits evaluated. The pathways and candidate genes identified are associated with steroid and glucocorticoid hormones, development delay, cognitive development, and behavioral changes in cattle and other species. CONCLUSIONS: Cow temperament is highly heritable and repeatable. The changes in temperament can be genetically improved by selecting animals with favorable learning and behavioral plasticity (i.e., habituation). Furthermore, the environment explains a large part of the variation in learning and behavioral plasticity, leading to opportunities to also improve the overall temperament by refining management practices. Moreover, behavioral plasticity offers opportunities to improve the long-term animal and handler welfare through habituation.


Subject(s)
Genomics , Temperament , Female , Cattle/genetics , Animals , Temperament/physiology , Genotype , Phenotype , North America
9.
Genet Sel Evol ; 55(1): 76, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919645

ABSTRACT

BACKGROUND: Hoof structure and health are essential for the welfare and productivity of beef cattle. Therefore, we assessed the genetic and genomic background of foot score traits in American (US) and Australian (AU) Angus cattle and investigated the feasibility of performing genomic evaluations combining data for foot score traits recorded in US and AU Angus cattle. The traits evaluated were foot angle (FA) and claw set (CS). In total, 109,294 and ~ 1.12 million animals had phenotypic and genomic information, respectively. Four sets of analyses were performed: (1) genomic connectedness between US and AU Angus cattle populations and population structure, (2) estimation of genetic parameters, (3) single-step genomic prediction of breeding values, and (4) single-step genome-wide association studies for FA and CS. RESULTS: There was no clear genetic differentiation between US and AU Angus populations. Similar heritability estimates (FA: 0.22-0.24 and CS: 0.22-0.27) and moderate-to-high genetic correlations between US and AU foot scores (FA: 0.61 and CS: 0.76) were obtained. A joint-genomic prediction using data from both populations outperformed within-country genomic evaluations. A genomic prediction model considering US and AU datasets as a single population performed similarly to the scenario accounting for genotype-by-environment interactions (i.e., multiple-trait model considering US and AU records as different traits), even though the genetic correlations between countries were lower than 0.80. Common significant genomic regions were observed between US and AU for FA and CS. Significant single nucleotide polymorphisms were identified on the Bos taurus (BTA) chromosomes BTA1, BTA5, BTA11, BTA13, BTA19, BTA20, and BTA23. The candidate genes identified were primarily from growth factor gene families, including FGF12 and GDF5, which were previously associated with bone structure and repair. CONCLUSIONS: This study presents comprehensive population structure and genetic and genomic analyses of foot scores in US and AU Angus cattle populations, which are essential for optimizing the implementation of genomic selection for improved foot scores in Angus cattle breeding programs. We have also identified candidate genes associated with foot scores in the largest Angus cattle populations in the world and made recommendations for genomic evaluations for improved foot score traits in the US and AU.


Subject(s)
Genome-Wide Association Study , Genome , Cattle/genetics , Animals , Genome-Wide Association Study/veterinary , Australia , Phenotype , Genotype , Genomics , Polymorphism, Single Nucleotide
10.
Pediatr Radiol ; 53(5): 971-983, 2023 05.
Article in English | MEDLINE | ID: mdl-36627376

ABSTRACT

Morquio syndrome, also known as Morquio-Brailsford syndrome or mucopolysaccharidosis type IV (MPS IV), is a subgroup of mucopolysaccharidosis. It is an autosomal recessive lysosomal storage disorder. Two subtypes of Morquio syndrome have been identified. In MPS IVA, a deficiency in N-acetylgalactosamine-6-sulfate sulfatase interrupts the normal metabolic pathway of degrading glycosaminoglycans. Accumulated undigested glycosaminoglycans in the tissue and bones result in complications leading to severe skeletal deformity. In MPS IVB, a deficiency in beta-galactosidase results in a milder phenotype than in MPS IVA. Morquio syndrome presents a variety of clinical manifestations in a spectrum of mild to severe. It classically has been considered a skeletal dysplasia with significant skeletal involvement. However, the extraskeletal features can also provide valuable information to guide further work-up to assess the possibility of the disorder. Although the disease involves almost all parts of the body, it most commonly affects the axial skeleton, specifically the vertebrae. The characteristic radiologic findings in MPS IV, such as paddle-shaped ribs, odontoid hypoplasia, vertebral deformity, metaphyseal and epiphyseal bone dysplasia, and steep acetabula, are encompassed in the term "dysostosis multiplex," which is a common feature among other types of MPS and storage disorders. Myelopathy due to spinal cord compression and respiratory airway obstruction are the most critical complications related to mortality and morbidity. The variety of clinical features, as well as overlapping of radiological findings with other disorders, make diagnosis challenging, and delays in diagnosis and treatment may lead to critical complications. Timely imaging and radiologic expertise are important components for diagnosis. Gene therapies may provide robust treatment, particularly if genetic variations can be screened in utero.


Subject(s)
Mucopolysaccharidosis IV , Osteochondrodysplasias , Humans , Mucopolysaccharidosis IV/diagnostic imaging , Mucopolysaccharidosis IV/drug therapy , Glycosaminoglycans/metabolism , Glycosaminoglycans/therapeutic use , Spine , Bone and Bones
11.
Glia ; 70(10): 1950-1970, 2022 10.
Article in English | MEDLINE | ID: mdl-35809238

ABSTRACT

Multiple sclerosis (MS) is a central nervous system (CNS) autoimmune disease characterized by inflammation, demyelination, and neurodegeneration. The ideal MS therapy would both specifically inhibit the underlying autoimmune response and promote repair/regeneration of myelin as well as maintenance of axonal integrity. Currently approved MS therapies consist of non-specific immunosuppressive molecules/antibodies which block activation or CNS homing of autoreactive T cells, but there are no approved therapies for stimulation of remyelination nor maintenance of axonal integrity. In an effort to repurpose an FDA-approved medication for myelin repair, we chose to examine the effectiveness of digoxin, a cardiac glycoside (Na+ /K+ ATPase inhibitor), originally identified as pro-myelinating in an in vitro screen. We found that digoxin regulated multiple genes in oligodendrocyte progenitor cells (OPCs) essential for oligodendrocyte (OL) differentiation in vitro, promoted OL differentiation both in vitro and in vivo in female naïve C57BL/6J (B6) mice, and stimulated recovery of myelinated axons in B6 mice following demyelination in the corpus callosum induced by cuprizone and spinal cord demyelination induced by lysophosphatidylcholine (LPC), respectively. More relevant to treatment of MS, we show that digoxin treatment of mice with established MOG35-55 -induced Th1/Th17-mediated chronic EAE combined with tolerance induced by the i.v. infusion of biodegradable poly(lactide-co-glycolide) nanoparticles coupled with MOG35-55 (PLG-MOG35-55 ) completely ameliorated clinical disease symptoms and stimulated recovery of OL lineage cell numbers. These findings provide critical pre-clinical evidence supporting future clinical trials of myelin-specific tolerance with myelin repair/regeneration drugs, such as digoxin, in MS patients.


Subject(s)
Cardiac Glycosides , Demyelinating Diseases , Multiple Sclerosis , Animals , Cardiac Glycosides/adverse effects , Cell Differentiation , Cuprizone , Demyelinating Diseases/chemically induced , Digoxin/adverse effects , Disease Models, Animal , Drug Repositioning , Female , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Myelin Sheath/physiology , Oligodendroglia/physiology
12.
Gastroenterology ; 161(1): 66-80.e8, 2021 07.
Article in English | MEDLINE | ID: mdl-33722583

ABSTRACT

BACKGROUND & AIMS: In celiac disease (CeD), gluten induces immune activation, leading to enteropathy. TAK-101, gluten protein (gliadin) encapsulated in negatively charged poly(dl-lactide-co-glycolic acid) nanoparticles, is designed to induce gluten-specific tolerance. METHODS: TAK-101 was evaluated in phase 1 dose escalation safety and phase 2a double-blind, randomized, placebo-controlled studies. Primary endpoints included pharmacokinetics, safety, and tolerability of TAK-101 (phase 1) and change from baseline in circulating gliadin-specific interferon-γ-producing cells at day 6 of gluten challenge, in patients with CeD (phase 2a). Secondary endpoints in the phase 2a study included changes from baseline in enteropathy (villus height to crypt depth ratio [Vh:Cd]), and frequency of intestinal intraepithelial lymphocytes and peripheral gut-homing T cells. RESULTS: In phase 2a, 33 randomized patients completed the 14-day gluten challenge. TAK-101 induced an 88% reduction in change from baseline in interferon-γ spot-forming units vs placebo (2.01 vs 17.58, P = .006). Vh:Cd deteriorated in the placebo group (-0.63, P = .002), but not in the TAK-101 group (-0.18, P = .110), although the intergroup change from baseline was not significant (P = .08). Intraepithelial lymphocyte numbers remained equal. TAK-101 reduced changes in circulating α4ß7+CD4+ (0.26 vs 1.05, P = .032), αEß7+CD8+ (0.69 vs 3.64, P = .003), and γδ (0.15 vs 1.59, P = .010) effector memory T cells. TAK-101 (up to 8 mg/kg) induced no clinically meaningful changes in vital signs or routine clinical laboratory evaluations. No serious adverse events occurred. CONCLUSIONS: TAK-101 was well tolerated and prevented gluten-induced immune activation in CeD. The findings from the present clinical trial suggest that antigen-specific tolerance was induced and represent a novel approach translatable to other immune-mediated diseases. ClinicalTrials.gov identifiers: NCT03486990 and NCT03738475.


Subject(s)
Celiac Disease/immunology , Gliadin/immunology , Immune Tolerance/immunology , Nanoparticles/administration & dosage , Celiac Disease/pathology , Double-Blind Method , Gliadin/administration & dosage , Glycolates/administration & dosage , Humans , Infusions, Intravenous
13.
Reprod Fertil Dev ; 35(2): 98-105, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36592979

ABSTRACT

The use of genotype information to improve the predictability of Expected Progeny Difference was first implemented in American Angus cattle in 2009 and has now grown to where over 50% of all registered calves are genotyped. Animals with only a genotype now have genetic prediction accuracy equivalent to eight or more progeny records across all traits. Reproductive technologies have also been widely adopted with approximately 50% of all calves born being the result of artificial insemination. Non-surgical embryo transfer started increasing in the mid 1990s with just over 10% of calves born being the result of embryo transfer since 2005. The number of embryos created with in vitro technologies has risen sharply since 2015 and now accounts for close to 30% of all ET calves. Genomics has enabled embryo technologies to be more impactful, as females can be selected with greater accuracy and sires can be used at earlier ages with moderate accuracy. Large numbers of females genotyped each year also increases the number of selection candidates, increasing the selection intensity. Genomics, combined with increased recording, also provides more information on females. This increases the spread in the estimated index values of current dams, identifying more elite dams for selection as embryo donors. The greater scope of female selection also contributes to better inbreeding management. Commercial animals genotyped could be targeted for oocyte harvesting at slaughter, creating opportunities for low cost high value beef embryos to be used in the beef on dairy segment of the industry.


Subject(s)
Genome , Genomics , Cattle/genetics , Animals , Female , Genotype , Insemination, Artificial/veterinary , Inbreeding , Selection, Genetic
14.
Cardiol Young ; 32(6): 896-903, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34407894

ABSTRACT

BACKGROUND: Parents who receive a diagnosis of a severe, life-threatening CHD for their foetus or neonate face a complex and stressful decision between termination, palliative care, or surgery. Understanding how parents make this initial treatment decision is critical for developing interventions to improve counselling for these families. METHODS: We conducted focus groups in four academic medical centres across the United States of America with a purposive sample of parents who chose termination, palliative care, or surgery for their foetus or neonate diagnosed with severe CHD. RESULTS: Ten focus groups were conducted with 56 parents (Mage = 34 years; 80% female; 89% White). Results were constructed around three domains: decision-making approaches; values and beliefs; and decision-making challenges. Parents discussed varying approaches to making the decision, ranging from relying on their "gut feeling" to desiring statistics and probabilities. Religious and spiritual beliefs often guided the decision to not terminate the pregnancy. Quality of life was an important consideration, including how each option would impact the child (e.g., pain or discomfort, cognitive and physical abilities) and their family (e.g., care for other children, marriage, and career). Parents reported inconsistent communication of options by clinicians and challenges related to time constraints for making a decision and difficulty in processing information when distressed. CONCLUSION: This study offers important insights that can be used to design interventions to improve decision support and family-centred care in clinical practice.


Subject(s)
Heart Defects, Congenital , Quality of Life , Adult , Child , Decision Making , Female , Fetus , Heart Defects, Congenital/therapy , Humans , Infant, Newborn , Male , Parents/psychology , Pregnancy
15.
Gastroenterology ; 158(6): 1667-1681.e12, 2020 05.
Article in English | MEDLINE | ID: mdl-32032584

ABSTRACT

BACKGROUND & AIMS: Celiac disease could be treated, and potentially cured, by restoring T-cell tolerance to gliadin. We investigated the safety and efficacy of negatively charged 500-nm poly(lactide-co-glycolide) nanoparticles encapsulating gliadin protein (TIMP-GLIA) in 3 mouse models of celiac disease. Uptake of these nanoparticles by antigen-presenting cells was shown to induce immune tolerance in other animal models of autoimmune disease. METHODS: We performed studies with C57BL/6; RAG1-/- (C57BL/6); and HLA-DQ8, huCD4 transgenic Ab0 NOD mice. Mice were given 1 or 2 tail-vein injections of TIMP-GLIA or control nanoparticles. Some mice were given intradermal injections of gliadin in complete Freund's adjuvant (immunization) or of soluble gliadin or ovalbumin (ear challenge). RAG-/- mice were given intraperitoneal injections of CD4+CD62L-CD44hi T cells from gliadin-immunized C57BL/6 mice and were fed with an AIN-76A-based diet containing wheat gluten (oral challenge) or without gluten. Spleen or lymph node cells were analyzed in proliferation and cytokine secretion assays or by flow cytometry, RNA sequencing, or real-time quantitative polymerase chain reaction. Serum samples were analyzed by gliadin antibody enzyme-linked immunosorbent assay, and intestinal tissues were analyzed by histology. Human peripheral blood mononuclear cells, or immature dendritic cells derived from human peripheral blood mononuclear cells, were cultured in medium containing TIMP-GLIA, anti-CD3 antibody, or lipopolysaccharide (controls) and analyzed in proliferation and cytokine secretion assays or by flow cytometry. Whole blood or plasma from healthy volunteers was incubated with TIMP-GLIA, and hemolysis, platelet activation and aggregation, and complement activation or coagulation were analyzed. RESULTS: TIMP-GLIA did not increase markers of maturation on cultured human dendritic cells or induce activation of T cells from patients with active or treated celiac disease. In the delayed-type hypersensitivity (model 1), the HLA-DQ8 transgenic (model 2), and the gliadin memory T-cell enteropathy (model 3) models of celiac disease, intravenous injections of TIMP-GLIA significantly decreased gliadin-specific T-cell proliferation (in models 1 and 2), inflammatory cytokine secretion (in models 1, 2, and 3), circulating gliadin-specific IgG/IgG2c (in models 1 and 2), ear swelling (in model 1), gluten-dependent enteropathy (in model 3), and body weight loss (in model 3). In model 1, the effects were shown to be dose dependent. Splenocytes from HLA-DQ8 transgenic mice given TIMP-GLIA nanoparticles, but not control nanoparticles, had increased levels of FOXP3 and gene expression signatures associated with tolerance induction. CONCLUSIONS: In mice with gliadin sensitivity, injection of TIMP-GLIA nanoparticles induced unresponsiveness to gliadin and reduced markers of inflammation and enteropathy. This strategy might be developed for the treatment of celiac disease.


Subject(s)
Celiac Disease/drug therapy , Gliadin/administration & dosage , Immune Tolerance/drug effects , Nanoparticles/administration & dosage , Administration, Intravenous , Animals , CD4-Positive T-Lymphocytes , Celiac Disease/blood , Celiac Disease/immunology , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Gliadin/immunology , Gliadin/toxicity , Glutens/administration & dosage , Glutens/immunology , HLA-DQ Antigens/genetics , HLA-DQ Antigens/immunology , Humans , Intestinal Mucosa , Leukocytes, Mononuclear , Mice , Mice, Transgenic , Nanoparticles/chemistry , Nanoparticles/toxicity , Polyglactin 910/chemistry , Primary Cell Culture , Toxicity Tests, Acute
16.
Ann Neurol ; 87(3): 442-455, 2020 03.
Article in English | MEDLINE | ID: mdl-31925846

ABSTRACT

OBJECTIVE: There are currently no definitive disease-modifying therapies for traumatic brain injury (TBI). In this study, we present a strong therapeutic candidate for TBI, immunomodulatory nanoparticles (IMPs), which ablate a specific subset of hematogenous monocytes (hMos). We hypothesized that prevention of infiltration of these cells into brain acutely after TBI would attenuate secondary damage and preserve anatomic and neurologic function. METHODS: IMPs, composed of US Food and Drug Administration-approved 500nm carboxylated-poly(lactic-co-glycolic) acid, were infused intravenously into wild-type C57BL/6 mice following 2 different models of experimental TBI, controlled cortical impact (CCI), and closed head injury (CHI). RESULTS: IMP administration resulted in remarkable preservation of both tissue and neurological function in both CCI and CHI TBI models in mice. After acute treatment, there was a reduction in the number of immune cells infiltrating into the brain, mitigation of the inflammatory status of the infiltrating cells, improved electrophysiologic visual function, improved long-term motor behavior, reduced edema formation as assessed by magnetic resonance imaging, and reduced lesion volumes on anatomic examination. INTERPRETATION: Our findings suggest that IMPs are a clinically translatable acute intervention for TBI with a well-defined mechanism of action and beneficial anatomic and physiologic preservation and recovery. Ann Neurol 2020;87:442-455.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Immunologic Factors/therapeutic use , Administration, Intravenous , Animals , Brain/immunology , Brain/pathology , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/pathology , Cell Movement/drug effects , Edema/complications , Edema/drug therapy , Immunologic Factors/administration & dosage , Immunologic Factors/chemistry , Magnetic Resonance Imaging , Male , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neuroimaging , Recovery of Function/drug effects
17.
J Immunol ; 203(1): 48-57, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31109955

ABSTRACT

CD4 T cells play a critical role in promoting the development of autoimmunity in type 1 diabetes. The diabetogenic CD4 T cell clone BDC-2.5, originally isolated from a NOD mouse, has been widely used to study the contribution of autoreactive CD4 T cells and relevant Ags to autoimmune diabetes. Recent work from our laboratory has shown that the Ag for BDC-2.5 T cells is a hybrid insulin peptide (2.5HIP) consisting of an insulin C-peptide fragment fused to a peptide from chromogranin A (ChgA) and that endogenous 2.5HIP-reactive T cells are major contributors to autoimmune pathology in NOD mice. The objective of this study was to determine if poly(lactide-co-glycolide) (PLG) nanoparticles (NPs) loaded with the 2.5HIP Ag (2.5HIP-coupled PLG NPs) can tolerize BDC-2.5 T cells. Infusion of 2.5HIP-coupled PLG NPs was found to prevent diabetes in an adoptive transfer model by impairing the ability of BDC-2.5 T cells to produce proinflammatory cytokines through induction of anergy, leading to an increase in the ratio of Foxp3+ regulatory T cells to IFN-γ+ effector T cells. To our knowledge, this work is the first to use a hybrid insulin peptide, or any neoepitope, to re-educate diabetogenic T cells and may have significant implications for the development of an Ag-specific therapy for type 1 diabetes patients.


Subject(s)
Chromogranin A/metabolism , Diabetes Mellitus, Type 1/therapy , Immunotherapy/methods , Insulin/metabolism , Nanoparticles/therapeutic use , Peptides/metabolism , Recombinant Fusion Proteins/therapeutic use , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Animals, Genetically Modified , Cells, Cultured , Chromogranin A/genetics , Diabetes Mellitus, Type 1/immunology , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Humans , Immune Tolerance , Insulin/genetics , Interferon-gamma/metabolism , Mice , Mice, Inbred NOD , Nanoparticles/metabolism , Peptides/genetics , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics
18.
Genet Sel Evol ; 53(1): 50, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34134619

ABSTRACT

BACKGROUND: While the adoption of genomic evaluations in livestock has increased genetic gain rates, its effects on genetic diversity and accumulation of inbreeding have raised concerns in cattle populations. Increased inbreeding may affect fitness and decrease the mean performance for economically important traits, such as fertility and growth in beef cattle, with the age of inbreeding having a possible effect on the magnitude of inbreeding depression. The purpose of this study was to determine changes in genetic diversity as a result of the implementation of genomic selection in Angus cattle and quantify potential inbreeding depression effects of total pedigree and genomic inbreeding, and also to investigate the impact of recent and ancient inbreeding. RESULTS: We found that the yearly rate of inbreeding accumulation remained similar in sires and decreased significantly in dams since the implementation of genomic selection. Other measures such as effective population size and the effective number of chromosome segments show little evidence of a detrimental effect of using genomic selection strategies on the genetic diversity of beef cattle. We also quantified pedigree and genomic inbreeding depression for fertility and growth. While inbreeding did not affect fertility, an increase in pedigree or genomic inbreeding was associated with decreased birth weight, weaning weight, and post-weaning gain in both sexes. We also measured the impact of the age of inbreeding and found that recent inbreeding had a larger depressive effect on growth than ancient inbreeding. CONCLUSIONS: In this study, we sought to quantify and understand the possible consequences of genomic selection on the genetic diversity of American Angus cattle. In both sires and dams, we found that, generally, genomic selection resulted in decreased rates of pedigree and genomic inbreeding accumulation and increased or sustained effective population sizes and number of independently segregating chromosome segments. We also found significant depressive effects of inbreeding accumulation on economically important growth traits, particularly with genomic and recent inbreeding.


Subject(s)
Cattle/genetics , Inbreeding , Polymorphism, Single Nucleotide , Selection, Genetic , Selective Breeding , Animals , Genetic Fitness , Inbreeding Depression , Pedigree , Quantitative Trait, Heritable , Red Meat/standards
19.
Nature ; 522(7555): 216-20, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25896324

ABSTRACT

Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.


Subject(s)
Clobetasol/pharmacology , Miconazole/pharmacology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Pluripotent Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Cerebellum/drug effects , Cerebellum/metabolism , Cerebellum/pathology , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Germ Layers/drug effects , Germ Layers/metabolism , Germ Layers/pathology , Humans , Lysophosphatidylcholines , MAP Kinase Signaling System , Male , Mice , Mitogen-Activated Protein Kinases/metabolism , Multiple Sclerosis/pathology , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Phenotype , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Receptors, Glucocorticoid/metabolism , Regeneration/drug effects , Tissue Culture Techniques
20.
Am J Emerg Med ; 39: 55-59, 2021 01.
Article in English | MEDLINE | ID: mdl-31959524

ABSTRACT

OBJECTIVE: Vasopressors are typically administered through central venous catheters (CVC) due to a historical risk of extravasation with peripheral administration. However, CVC insertion is a time-consuming process that may delay vasopressor administration and is associated with complications. The Virginia Commonwealth University Health System (VCUHS) Emergency Department (ED) implemented a protocol that recommends peripheral norepinephrine (pNE) be administered through an 18 gauge or larger at or above the antecubital fossa or the external jugular vein with a maximum dose of 20 µg/min. This study characterizes the use and incidence of extravasation in all adult patients who received pNE initiated in the VCUHS ED. METHODS: This was an observational, retrospective cohort study in adult patients from March 2016 to March 2019. Of the 331 patients that were screened, 177 met inclusion criteria. Data were analyzed using descriptive statistics. RESULTS: Patients had a median age of 60 years and 59% were male. The median APACHE II score was 25 with an overall hospital mortality of 27%. A majority of patients received pNE for distributive shock (63%). Approximately 69% received pNE through an antecubital infusion site. The median total pNE duration was 62 min (IQR 32, 142). Eighty-four percent of patients received a central line. Only 2.3% of patients had confirmed extravasation in addition to another 2.3% where extravasation could not be excluded, for a total rate of 4.5%. None had subsequent extremity injury. CONCLUSIONS: Administration of pNE according to the VCUHS ED protocol resulted in a low extravasation rate.


Subject(s)
Emergency Service, Hospital/statistics & numerical data , Extravasation of Diagnostic and Therapeutic Materials , Infusions, Intravenous/adverse effects , Norepinephrine/adverse effects , Vasoconstrictor Agents/adverse effects , APACHE , Adult , Aged , Aged, 80 and over , Catheterization, Peripheral , Central Venous Catheters , Female , Hospital Mortality , Humans , Male , Middle Aged , Norepinephrine/administration & dosage , Retrospective Studies , Shock/drug therapy , Vasoconstrictor Agents/administration & dosage , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL