ABSTRACT
BACKGROUND: The atypical seed storage behaviour reported in several orchid species justifies cryopreservation as a complementary conservation strategy to conventional seed banking. OBJECTIVE: This study aimed to assess the seed cryopreservation potential of five orchid species; two tropical epiphytic, Indonesian species (Dendrobium strebloceras, D. lineale), one temperate epiphytic, New Zealand species (D. cunninghamii) and two temperate terrestrial, New Zealand species (Pterostylis banksii, Thelymitra nervosa). MATERIALS AND METHODS: Seeds were cryopreserved by direct immersion in liquid nitrogen (LN) and through the application of a cryoprotectant vitrification method. For the latter, seeds were exposed to Plant Vitrification Solution 2 (PVS2) for 0, 20, 50, and 70 min, at either room temperature or on ice, prior to immersion in LN. RESULTS: Seeds of all the studied species germinated well following direct cooling in LN. There was no difference in the seedling development capability between cryopreserved and non-cryopreserved seeds of both tropical epiphytic species and direct immersion in LN enhanced seed germination and shoot formation in both temperate terrestrials. CONCLUSION: Through a range of analyses of germination and post-germination growth, our study shows the potential for cryopreserving epiphytic or terrestrial orchids from tropical and temperate regions. Doi: 10.54680/fr23410110312.
Subject(s)
Cryopreservation , Orchidaceae , Cryopreservation/methods , Indonesia , New Zealand , Germination , SeedsABSTRACT
Changes in seed lipid composition during ageing are associated with seed viability loss in many plant species. However, due to their small seed size, this has not been previously explored in orchids. We characterized and compared the seed viability and fatty acid profiles of five orchid species before and after ageing: one tropical epiphytic orchid from Indonesia (Dendrobium strebloceras), and four temperate species from New Zealand, D. cunninghamii (epiphytic), and Gastrodia cunninghamii, Pterostylis banksii and Thelymitra nervosa (terrestrial). Seeds were aged under controlled laboratory conditions (3-month storage at 60% RH and 20 °C). Seed viability was tested before and after ageing using tetrazolium chloride staining. Fatty acid methyl esters from fresh and aged seeds were extracted through trans-esterification, and then analysed using gas chromatography-mass spectrometry. All species had high initial viability (>80%) and experienced significant viability loss after ageing. The saturated, polyunsaturated, monounsaturated and total fatty acid content decreased with ageing in all species, but this reduction was only significant for D. strebloceras, D. cunninghamii and G. cunninghamii. Our results suggest that fatty acid degradation is a typical response to ageing in orchids, albeit with species variation in magnitude, but the link between fatty acid degradation and viability was not elucidated. Pterostylis banksii exemplified this variation; it showed marked viability loss despite not having a significant reduction in its fatty acid content after ageing. More research is required to identify the effect of ageing on fatty acid composition in orchids, and its contribution to seed viability loss.
Subject(s)
Fatty Acids , Orchidaceae , Gas Chromatography-Mass Spectrometry , SeedsABSTRACT
The effects of 40 mg/kg Metrazol on a conditioned saccharin aversion produced by LiCl were studied in two experiments. In Experiment 1, it was found that Metrazol administered 10 min before or after LiCl did not impair conditioned aversion to saccharin. In Experiment 2, Metrazol was given 2 min before, 9 or 3 min after the administration of LiCl. Under these conditions, impairment did occur. It was concluded that Metrazol may impair conditioned taste aversion in a time-dependent manner. The present findings are discussed in terms of their relationship to ECS as an interfering agent and retroactive and proactive effects on the CS and/or the UCS.