Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Publication year range
1.
Cell ; 182(5): 1311-1327.e14, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888495

ABSTRACT

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.


Subject(s)
Bacteremia/blood , Bacteremia/mortality , Staphylococcal Infections/blood , Staphylococcal Infections/mortality , Staphylococcus aureus/pathogenicity , Animals , Bacteremia/metabolism , Biomarkers/blood , Biomarkers/metabolism , Disease Models, Animal , Female , Humans , Male , Metabolomics/methods , Mice , Middle Aged , Prognosis , Proteomics/methods , Risk Factors , Staphylococcal Infections/metabolism
2.
Circ Res ; 133(4): 313-329, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37449401

ABSTRACT

BACKGROUND: ZFHX3 (zinc finger homeobox 3), a gene that encodes a large transcription factor, is at the second-most significantly associated locus with atrial fibrillation (AF), but its function in the heart is unknown. This study aims to identify causative genetic variation related to AF at the ZFHX3 locus and examine the impact of Zfhx3 loss on cardiac function in mice. METHODS: CRISPR-Cas9 genome editing, chromatin immunoprecipitation, and luciferase assays in pluripotent stem cell-derived cardiomyocytes were used to identify causative genetic variation related to AF at the ZFHX3 locus. Cardiac function was assessed by echocardiography, magnetic resonance imaging, electrophysiology studies, calcium imaging, and RNA sequencing in mice with heterozygous and homozygous cardiomyocyte-restricted Zfhx3 loss (Zfhx3 Het and knockout, respectively). Human cardiac single-nucleus ATAC (assay for transposase-accessible chromatin)-sequencing data was analyzed to determine which genes in atrial cardiomyocytes are directly regulated by ZFHX3. RESULTS: We found single-nucleotide polymorphism (SNP) rs12931021 modulates an enhancer regulating ZFHX3 expression, and the AF risk allele is associated with decreased ZFHX3 transcription. We observed a gene-dose response in AF susceptibility with Zfhx3 knockout mice having higher incidence, frequency, and burden of AF than Zfhx3 Het and wild-type mice, with alterations in conduction velocity, atrial action potential duration, calcium handling and the development of atrial enlargement and thrombus, and dilated cardiomyopathy. Zfhx3 loss results in atrial-specific differential effects on genes and signaling pathways involved in cardiac pathophysiology and AF. CONCLUSIONS: Our findings implicate ZFHX3 as the causative gene at the 16q22 locus for AF, and cardiac abnormalities caused by loss of cardiac Zfhx3 are due to atrial-specific dysregulation of pathways involved in AF susceptibility. Together, these data reveal a novel and important role for Zfhx3 in the control of cardiac genes and signaling pathways essential for normal atrial function.


Subject(s)
Atrial Fibrillation , Homeodomain Proteins , Animals , Humans , Mice , Atrial Fibrillation/genetics , Calcium/metabolism , Dilatation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/genetics
3.
PLoS Biol ; 19(4): e3001144, 2021 04.
Article in English | MEDLINE | ID: mdl-33872299

ABSTRACT

Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry-based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species.


Subject(s)
Myocardium/metabolism , Proteome/metabolism , Animals , Heart/physiology , Heart Ventricles/chemistry , Heart Ventricles/metabolism , Horses , Humans , Mice , Models, Animal , Myocardium/chemistry , Organ Specificity , Protein Processing, Post-Translational , Proteome/analysis , Proteomics/methods , Rats , Species Specificity , Swine , Zebrafish
4.
Genome Res ; 30(2): 276-286, 2020 02.
Article in English | MEDLINE | ID: mdl-31992612

ABSTRACT

Connections between the microbiome and health are rapidly emerging in a wide range of diseases. However, a detailed mechanistic understanding of how different microbial communities are influencing their hosts is often lacking. One method researchers have used to understand these effects are germ-free (GF) mouse models. Differences found within the organ systems of these model organisms may highlight generalizable mechanisms that microbiome dysbioses have throughout the host. Here, we applied multiplexed, quantitative proteomics on the brains, spleens, hearts, small intestines, and colons of conventionally raised and GF mice, identifying associations to colonization state in over 7000 proteins. Highly ranked associations were constructed into protein-protein interaction networks and visualized onto an interactive 3D mouse model for user-guided exploration. These results act as a resource for microbiome researchers hoping to identify host effects of microbiome colonization on a given organ of interest. Our results include validation of previously reported effects in xenobiotic metabolism, the innate immune system, and glutamate-associated proteins while simultaneously providing organism-wide context. We highlight organism-wide differences in mitochondrial proteins including consistent increases in NNT, a mitochondrial protein with essential roles in influencing levels of NADH and NADPH, in all analyzed organs of conventional mice. Our networks also reveal new associations for further exploration, including protease responses in the spleen, high-density lipoproteins in the heart, and glutamatergic signaling in the brain. In total, our study provides a resource for microbiome researchers through detailed tables and visualization of the protein-level effects of microbial colonization on several organ systems.


Subject(s)
Dysbiosis/genetics , Gastrointestinal Microbiome/genetics , Host-Pathogen Interactions/genetics , Proteomics , Animals , Brain/metabolism , Brain/microbiology , Colon/metabolism , Colon/microbiology , Dysbiosis/microbiology , Heart/microbiology , Humans , Intestine, Small/metabolism , Intestine, Small/microbiology , Liver/metabolism , Liver/microbiology , Mice , Spleen/metabolism , Spleen/microbiology
5.
Mol Psychiatry ; 27(2): 1217-1225, 2022 02.
Article in English | MEDLINE | ID: mdl-34741130

ABSTRACT

Schizophrenia is a devastating psychiatric illness that detrimentally affects a significant portion of the worldwide population. Aging of schizophrenia patients is associated with reduced longevity, but the potential biological factors associated with aging in this population have not yet been investigated in a global manner. To address this gap in knowledge, the present study assesses proteomics and metabolomics profiles in the plasma of subjects afflicted with schizophrenia compared to non-psychiatric control patients over six decades of life. Global, unbiased analyses of circulating blood plasma can provide knowledge of prominently dysregulated molecular pathways and their association with schizophrenia, as well as features of aging and gender in this disease. The resulting data compiled in this study represent a compendium of molecular changes associated with schizophrenia over the human lifetime. Supporting the clinical finding of schizophrenia's association with more rapid aging, both schizophrenia diagnosis and age significantly influenced the plasma proteome in subjects assayed. Schizophrenia was broadly associated with prominent dysregulation of inflammatory and metabolic system components. Proteome changes demonstrated increased abundance of biomarkers for risk of physiologic comorbidities of schizophrenia, especially in younger individuals. These findings advance our understanding of the molecular etiology of schizophrenia and its associated comorbidities throughout the aging process.


Subject(s)
Schizophrenia , Aging/metabolism , Humans , Inflammation , Plasma , Proteome , Schizophrenia/genetics , Schizophrenia/metabolism
6.
Sensors (Basel) ; 22(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35808405

ABSTRACT

The need for reliable communications in industrial systems becomes more evident as industries strive to increase reliance on automation. This trend has sustained the adoption of WirelessHART communications as a key enabling technology and its operational integrity must be ensured. This paper focuses on demonstrating pre-deployment counterfeit detection using active 2D Distinct Native Attribute (2D-DNA) fingerprinting. Counterfeit detection is demonstrated using experimentally collected signals from eight commercial WirelessHART adapters. Adapter fingerprints are used to train 56 Multiple Discriminant Analysis (MDA) models with each representing five authentic network devices. The three non-modeled devices are introduced as counterfeits and a total of 840 individual authentic (modeled) versus counterfeit (non-modeled) ID verification assessments performed. Counterfeit detection is performed on a fingerprint-by-fingerprint basis with best case per-device Counterfeit Detection Rate (%CDR) estimates including 87.6% < %CDR < 99.9% and yielding an average cross-device %CDR ≈ 92.5%. This full-dimensional feature set performance was echoed by dimensionally reduced feature set performance that included per-device 87.0% < %CDR < 99.7% and average cross-device %CDR ≈ 91.4% using only 18-of-291 features­the demonstrated %CDR > 90% with an approximate 92% reduction in the number of fingerprint features is sufficiently promising for small-scale network applications and warrants further consideration.


Subject(s)
Counterfeit Drugs , Counterfeit Drugs/analysis , DNA Fingerprinting , Discriminant Analysis , Industry
7.
J Transl Med ; 19(1): 46, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33509203

ABSTRACT

BACKGROUND: Current diagnostic blood tests for prostate cancer (PCa) are unreliable for the early stage disease, resulting in numerous unnecessary prostate biopsies in men with benign disease and false reassurance of negative biopsies in men with PCa. Predicting the risk of PCa is pivotal for making an informed decision on treatment options as the 5-year survival rate in the low-risk group is more than 95% and most men would benefit from surveillance rather than active treatment. Three-dimensional genome architecture and chromosome structures undergo early changes during tumourigenesis both in tumour and in circulating cells and can serve as a disease biomarker. METHODS: In this prospective study we screened whole blood of newly diagnosed, treatment naïve PCa patients (n = 140) and cancer-free controls (n = 96) for the presence of 14,241 chromosomal loops in the loci of 425 genes. RESULTS: We have detected specific chromosome conformation changes in the loci of ETS1, MAP3K14, SLC22A3 and CASP2 genes in peripheral blood from PCa patients yielding PCa detection with 80% sensitivity and 80% specificity. Further analysis between PCa risk groups yielded prognostic validation sets consisting of HSD3B2, VEGFC, APAF1, BMP6, ERG, MSR1, MUC1, ACAT1 and DAPK1 genes that achieved 80% sensitivity and 93% specificity stratifying high-risk category 3 vs low risk category 1 and 84% sensitivity and 89% specificity stratifying high risk category 3 vs intermediate risk category 2 disease. CONCLUSIONS: Our results demonstrate specific chromosome conformations in the blood of PCa patients that allow PCa diagnosis and risk stratification with high sensitivity and specificity.


Subject(s)
Chromatin , Prostatic Neoplasms , Humans , Male , Prognosis , Prospective Studies , Prostate-Specific Antigen , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics
8.
J Nutr ; 151(2): 281-292, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33382404

ABSTRACT

BACKGROUND: Genetic factors modify serum 25-hydroxyvitamin D [25(OH)D] concentration and can affect the optimal intake of vitamin D. OBJECTIVES: We aimed to personalize vitamin D supplementation by applying knowledge of genetic factors affecting serum 25(OH)D concentration. METHODS: We performed a genome-wide association study of serum 25(OH)D concentration in the Finnish Health 2011 cohort (n = 3339) using linear regression and applied the results to develop a population-matched genetic risk score (GRS) for serum 25(OH)D. This GRS was used to tailor vitamin D supplementation for 96 participants of a longitudinal Digital Health Revolution (DHR) Study. The GRS, serum 25(OH)D concentrations, and personalized supplementation and dietary advice were electronically returned to participants. Serum 25(OH)D concentrations were assessed using immunoassays and vitamin D intake using FFQs. In data analyses, cross-sectional and repeated-measures statistical tests and models were applied as described in detail elsewhere. RESULTS: GC vitamin D-binding protein and cytochrome P450 family 2 subfamily R polypeptide 1 genes showed genome-wide significant associations with serum 25(OH)D concentration. One single nucleotide polymorphism from each locus (rs4588 and rs10741657) was used to develop the GRS. After returning data to the DHR Study participants, daily vitamin D supplement users increased from 32.6% to 60.2% (P = 6.5 × 10-6) and serum 25(OH)D concentration from 64.4 ± 20.9 nmol/L to 68.5 ± 19.2 nmol/L (P = 0.006) between August and November. Notably, the difference in serum 25(OH)D concentrations between participants with no risk alleles and those with 3 or 4 risk alleles decreased from 20.7 nmol/L to 8.0 nmol/L (P = 0.0063). CONCLUSIONS: We developed and applied a population-matched GRS to identify individuals genetically predisposed to low serum 25(OH)D concentration. We show how the electronic return of individual genetic risk, serum 25(OH)D concentrations, and factors affecting vitamin D status can be used to tailor vitamin D supplementation. This model could be applied to other populations and countries.


Subject(s)
Genetic Predisposition to Disease , Vitamin D Deficiency/genetics , Vitamin D Deficiency/prevention & control , Vitamin D/analogs & derivatives , Vitamin D/administration & dosage , Adult , Cohort Studies , Diet , Dietary Supplements , Female , Finland , Genome-Wide Association Study , Humans , Male , Middle Aged , Vitamin D/blood
9.
Mol Cell Proteomics ; 18(9): 1864-1879, 2019 09.
Article in English | MEDLINE | ID: mdl-31262998

ABSTRACT

Consumption of refined high-fat, low-fiber diets promotes development of obesity and its associated consequences. Although genetics play an important role in dictating susceptibility to such obesogenic diets, mice with nearly uniform genetics exhibit marked heterogeneity in their extent of obesity in response to such diets. This suggests non-genetic determinants play a role in diet-induced obesity. Hence, we sought to identify parameters that predict, and/or correlate with, development of obesity in response to an obesogenic diet. We assayed behavior, metabolic parameters, inflammatory markers/cytokines, microbiota composition, and the fecal metaproteome, in a cohort of mice (n = 50) prior to, and the 8 weeks following, administration of an obesogenic high-fat low-fiber diet. Neither behavioral testing nor quantitation of inflammatory markers broadly predicted severity of diet-induced obesity. Although, the small subset of mice that exhibited basal elevations in serum IL-6 (n = 5) were among the more obese mice in the cohort. While fecal microbiota composition changed markedly in response to the obesogenic diet, it lacked the ability to predict which mice were relative prone or resistant to obesity. In contrast, fecal metaproteome analysis revealed functional and taxonomic differences among the proteins associated with proneness to obesity. Targeted interrogation of microbiota composition data successfully validated the taxonomic differences seen in the metaproteome. Although future work will be needed to determine the breadth of applicability of these associations to other cohorts of animals and humans, this study nonetheless highlights the potential power of gut microbial proteins to predict and perhaps impact development of obesity.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/physiology , Obesity/etiology , Proteome/metabolism , Animals , Body Composition , Diet, High-Fat/adverse effects , Diet, Western/adverse effects , Female , Flagellin/metabolism , Gastrointestinal Microbiome/genetics , Immunoglobulin A/blood , Inflammation Mediators/metabolism , Lipocalin-2/metabolism , Metabolic Syndrome/etiology , Metabolic Syndrome/microbiology , Mice, Inbred C57BL , Obesity/microbiology , Proteome/analysis , RNA, Ribosomal, 16S
10.
Proc Natl Acad Sci U S A ; 115(42): 10684-10689, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30257938

ABSTRACT

The Hippo tumor-suppressor pathway regulates organ growth, cell proliferation, and stem cell biology. Defects in Hippo signaling and hyperactivation of its downstream effectors-Yorkie (Yki) in Drosophila and YAP/TAZ in mammals-result in progenitor cell expansion and overgrowth of multiple organs and contribute to cancer development. Deciphering the mechanisms that regulate the activity of the Hippo pathway is key to understanding its function and for therapeutic targeting. However, although the Hippo kinase cascade and several other upstream inputs have been identified, the mechanisms that regulate Yki/YAP/TAZ activity are still incompletely understood. To identify new regulators of Yki activity, we screened in Drosophila for suppressors of tissue overgrowth and Yki activation caused by overexpression of atypical protein kinase C (aPKC), a member of the apical cell polarity complex. In this screen, we identified mutations in the heterogeneous nuclear ribonucleoprotein Hrb27C that strongly suppressed the tissue defects induced by ectopic expression of aPKC. Hrb27C was required for aPKC-induced tissue growth and Yki target gene expression but did not affect general gene expression. Genetic and biochemical experiments showed that Hrb27C affects Yki phosphorylation. Other RNA-binding proteins known to interact with Hrb27C for mRNA transport in oocytes were also required for normal Yki activity, although they suppressed Yki output. Based on the known functions of Hrb27C, we conclude that Hrb27C-mediated control of mRNA splicing, localization, or translation is essential for coordinated activity of the Hippo pathway.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Nuclear Proteins/genetics , Poly(A)-Binding Protein II/genetics , Poly(A)-Binding Protein II/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Trans-Activators/genetics , YAP-Signaling Proteins
11.
Int J Mol Sci ; 22(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801801

ABSTRACT

BACKGROUND: Vancomycin is commonly used as a first line therapy for gram positive organisms such as methicillin resistant Staphylococcusaureus. Vancomycin-induced acute kidney injury (V-AKI) has been reported in up to 43% of patients, especially in those with higher targeted trough concentrations. The precise mechanism of injury in humans remains elusive, with recent evidence directed towards proximal tubule cell apoptosis. In this study, we investigated the protein contents of urinary exosomes in patients with V-AKI to further elucidate biomarkers of mechanisms of injury and potential responses. METHODS: Urine samples from patients with V-AKI who were enrolled in the DIRECT study and matched healthy controls from the UAB-UCSD O'Brien Center Biorepository were included in the analysis. Exosomes were extracted using solvent exclusion principle and polyethylene glycol induced precipitation. Protein identity and quantification was determined by label-free liquid chromatography mass spectrometry (LC/MS). The mean peak serum creatinine was 3.7 ± 1.4 mg/dL and time to kidney injury was 4.0 ± 3.0 days. At discharge, 90% of patients demonstrated partial recovery; 33% experienced full recovery by day 28. Proteomic analyses on five V-AKI and 7 control samples revealed 2009 proteins in all samples and 251 proteins significantly associated with V-AKI (Pi-score > 1). The top discriminatory proteins were complement C3, complement C4, galectin-3-binding protein, fibrinogen, alpha-2 macroglobulin, immunoglobulin heavy constant mu and serotransferrin. CONCLUSION: Urinary exosomes reveal up-regulation of inflammatory proteins after nephrotoxic injury in V-AKI. Further studies are necessary in a large patient sample to confirm these findings for elucidation of pathophysiologic mechanisms and validation of potential injury biomarkers.


Subject(s)
Acute Kidney Injury/metabolism , Biomarkers/metabolism , Exosomes/metabolism , Inflammation/metabolism , Proteomics/methods , Acute Kidney Injury/chemically induced , Acute Kidney Injury/urine , Adult , Biomarkers/urine , Chromatography, Liquid/methods , Creatinine/urine , Humans , Inflammation/urine , Male , Middle Aged , Tandem Mass Spectrometry/methods , Vancomycin/adverse effects , Young Adult
12.
Hum Mutat ; 41(12): 2195-2204, 2020 12.
Article in English | MEDLINE | ID: mdl-33131149

ABSTRACT

The identification of a pathogenic SCN5A variant confers an increased risk of conduction defects and ventricular arrhythmias (VA) in Brugada syndrome (BrS). However, specific aspects of sodium channel function that influence clinical phenotype have not been defined. A systematic literature search identified SCN5A variants associated with BrS. Sodium current (INa ) functional parameters (peak current, decay, steady-state activation and inactivation, and recovery from inactivation) and clinical features (conduction abnormalities [CA], spontaneous VA or family history of sudden cardiac death [SCD], and spontaneous BrS electrocardiogram [ECG]) were extracted. A total of 561 SCN5A variants associated with BrS were identified, for which data on channel function and clinical phenotype were available in 142. In the primary analysis, no relationship was found between any aspect of channel function and CA, VA/SCD, or spontaneous BrS ECG pattern. Sensitivity analyses including only variants graded pathogenic or likely pathogenic suggested that reduction in peak current and positive shift in steady-state activation were weakly associated with CA and VA/SCD, although sensitivity and specificity remained low. The relationship between in vitro assessment of channel function and BrS clinical phenotype is weak. The assessment of channel function does not enhance risk stratification. Caution is needed when extrapolating functional testing to the likelihood of variant pathogenicity.


Subject(s)
Brugada Syndrome/genetics , Brugada Syndrome/pathology , Mutation/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , Arrhythmias, Cardiac/genetics , Brugada Syndrome/diagnostic imaging , Electrocardiography , Heart Conduction System/pathology , Humans , Phenotype
13.
Prostate ; 80(7): 547-558, 2020 05.
Article in English | MEDLINE | ID: mdl-32153047

ABSTRACT

BACKGROUND: Prostate cancer exhibits severe clinical heterogeneity and there is a critical need for clinically implementable tools able to precisely and noninvasively identify patients that can either be safely removed from treatment pathways or those requiring further follow up. Our objectives were to develop a multivariable risk prediction model through the integration of clinical, urine-derived cell-free messenger RNA (cf-RNA) and urine cell DNA methylation data capable of noninvasively detecting significant prostate cancer in biopsy naïve patients. METHODS: Post-digital rectal examination urine samples previously analyzed separately for both cellular methylation and cf-RNA expression within the Movember GAP1 urine biomarker cohort were selected for a fully integrated analysis (n = 207). A robust feature selection framework, based on bootstrap resampling and permutation, was utilized to find the optimal combination of clinical and urinary markers in a random forest model, deemed ExoMeth. Out-of-bag predictions from ExoMeth were used for diagnostic evaluation in men with a clinical suspicion of prostate cancer (PSA ≥ 4 ng/mL, adverse digital rectal examination, age, or lower urinary tract symptoms). RESULTS: As ExoMeth risk score (range, 0-1) increased, the likelihood of high-grade disease being detected on biopsy was significantly greater (odds ratio = 2.04 per 0.1 ExoMeth increase, 95% confidence interval [CI]: 1.78-2.35). On an initial TRUS biopsy, ExoMeth accurately predicted the presence of Gleason score ≥3 + 4, area under the receiver-operator characteristic curve (AUC) = 0.89 (95% CI: 0.84-0.93) and was additionally capable of detecting any cancer on biopsy, AUC = 0.91 (95% CI: 0.87-0.95). Application of ExoMeth provided a net benefit over current standards of care and has the potential to reduce unnecessary biopsies by 66% when a risk threshold of 0.25 is accepted. CONCLUSION: Integration of urinary biomarkers across multiple assay methods has greater diagnostic ability than either method in isolation, providing superior predictive ability of biopsy outcomes. ExoMeth represents a more holistic view of urinary biomarkers and has the potential to result in substantial changes to how patients suspected of harboring prostate cancer are diagnosed.


Subject(s)
Cell-Free Nucleic Acids/urine , DNA Methylation , DNA/urine , Models, Genetic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/urine , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/urine , Cell-Free Nucleic Acids/genetics , Cohort Studies , DNA/genetics , Humans , Male , Middle Aged , Multivariate Analysis , Neoplasm Grading , Prostatic Neoplasms/pathology , Risk Assessment
14.
BJU Int ; 125(1): 28-37, 2020 01.
Article in English | MEDLINE | ID: mdl-31605663

ABSTRACT

OBJECTIVES: (i) To assess whether exercise training attenuates the adverse effects of treatment in patients with newly diagnosed prostate cancer beginning androgen-deprivation therapy (ADT), and (ii) to examine whether exercise-induced improvements are sustained after the withdrawal of supervised exercise. PATIENTS AND METHODS: In all, 50 patients with prostate cancer scheduled for ADT were randomised to an exercise group (n = 24) or a control group (n = 26). The exercise group completed 3 months of supervised aerobic and resistance exercise training (twice a week for 60 min), followed by 3 months of self-directed exercise. Outcomes were assessed at baseline, 3- and 6-months. The primary outcome was difference in fat mass at 3-months. Secondary outcomes included: fat-free mass, cardiopulmonary exercise testing variables, QRISK® 2 (ClinRisk Ltd, Leeds, UK) score, anthropometry, blood-borne biomarkers, fatigue, and quality of life (QoL). RESULTS: At 3-months, exercise training prevented adverse changes in peak O2 uptake (1.9 mL/kg/min, P = 0.038), ventilatory threshold (1.7 mL/kg/min, P = 0.013), O2 uptake efficiency slope (0.21, P = 0.005), and fatigue (between-group difference in Functional Assessment of Chronic Illness Therapy-Fatigue score of 4.5 points, P = 0.024) compared with controls. After the supervised exercise was withdrawn, the differences in cardiopulmonary fitness and fatigue were not sustained, but the exercise group showed significantly better QoL (Functional Assessment of Cancer Therapy-Prostate difference of 8.5 points, P = 0.034) and a reduced QRISK2 score (-2.9%, P = 0.041) compared to controls. CONCLUSION: A short-term programme of supervised exercise in patients with prostate cancer beginning ADT results in sustained improvements in QoL and cardiovascular events risk profile.


Subject(s)
Androgen Antagonists/adverse effects , Drug-Related Side Effects and Adverse Reactions/therapy , Exercise , Prostatic Neoplasms/drug therapy , Aged , Androgen Antagonists/therapeutic use , Humans , Male , Prospective Studies , Time Factors , Treatment Outcome
15.
Glob Chang Biol ; 24(9): 3911-3921, 2018 09.
Article in English | MEDLINE | ID: mdl-29569798

ABSTRACT

Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb-14 C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.


Subject(s)
Carbon/metabolism , Climate Change , Plants/metabolism , Soil/chemistry , Carbon Cycle , Carbon Dioxide/metabolism , Carbon Sequestration , Ecosystem , Plant Development , Seasons , Sphagnopsida
16.
Circ Res ; 118(1): 56-72, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26503464

ABSTRACT

RATIONALE: More than 25 million individuals have heart failure worldwide, with ≈4000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only ≈2500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. OBJECTIVE: The objective of this study is to translate previous work to human scale and clinically relevant cells for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human induced pluripotent stem cell-derived cardiomyocytes. METHODS AND RESULTS: To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiomyocytes derived from nontransgenic human induced pluripotent stem cells and generated tissues of increasing 3-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole-heart scaffolds with human induced pluripotent stem cell-derived cardiomyocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue and showed electrical conductivity, left ventricular pressure development, and metabolic function. CONCLUSIONS: Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human induced pluripotent stem cell-derived cardiomyocytes and enable the bioengineering of functional human myocardial-like tissue of multiple complexities.


Subject(s)
Bioengineering/methods , Extracellular Matrix/physiology , Myocardium/cytology , Pluripotent Stem Cells/physiology , Adult , Aged , Cell Differentiation/physiology , Female , Humans , Male , Middle Aged
17.
Support Care Cancer ; 26(5): 1515-1523, 2018 May.
Article in English | MEDLINE | ID: mdl-29181804

ABSTRACT

PURPOSE: Strategies to improve pre-operative cardiopulmonary fitness could positively impact recovery after surgery. This study investigated the feasibility of vigorous intensity aerobic interval exercise in bladder cancer patients prior to radical cystectomy (RC). METHODS: A total of 60 patients were randomised (1:1) to exercise or control following a cardiopulmonary exercise test (CPET). The exercise group was offered twice-weekly pre-operative supervised vigorous intensity aerobic interval exercise in addition to standard treatment. The controls received standard treatment only. A repeat CPET was undertaken before surgery and post-operative recovery outcomes were recorded. RESULTS: Over half of the 112 eligible patients approached in the clinic were recruited to the study (53.5%), with recruited patients attending a median of 8 (range 1-10) exercise sessions over a pre-operative period of 3-6 weeks. Improvements in peak values of oxygen pulse (P = 0.001), minute ventilation (P = 0.002) and power output (P < 0.001) were observed at the follow-up CPET in the exercise group versus controls and there were no adverse events. Although this feasibility study was not powered to detect changes in post-operative recovery outcomes, there were marginal (non-significant) differences in favour of the exercise group in post-operative Clavien-Dindo score and need for high dependency unit inotropic support. CONCLUSIONS: Bladder cancer patients respond well to pre-surgical aerobic interval exercise, and the improvements in cardiopulmonary fitness variables could have important implications for post-operative recuperation after RC. These findings provide a strong foundation for an adequately powered randomised controlled trial.


Subject(s)
Cystectomy/methods , Exercise Therapy/methods , Urinary Bladder Neoplasms/therapy , Aged , Exercise Test , Feasibility Studies , Female , High-Intensity Interval Training , Humans , Male , Treatment Outcome , Urinary Bladder Neoplasms/surgery
18.
Article in English | MEDLINE | ID: mdl-28584144

ABSTRACT

Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is highly prevalent worldwide and has a major impact on reproductive and neonatal health. The superbug status of N. gonorrhoeae necessitates the development of drugs with different mechanisms of action. Here, we focused on targeting the nitrite reductase AniA, which is a pivotal component of N. gonorrhoeae anaerobic respiration and biofilm formation. Our studies showed that gonococci expressing AniA containing the altered catalytic residues D137A and H280A failed to grow under anaerobic conditions, demonstrating that the nitrite reductase function is essential. To facilitate the pharmacological targeting of AniA, new crystal structures of AniA were refined to 1.90-Å and 2.35-Å resolutions, and a phage display approach with libraries expressing randomized linear dodecameric peptides or heptameric peptides flanked by a pair of cysteine residues was utilized. Biopanning experiments led to the identification of 29 unique peptides, with 1 of them, C7-3, being identified multiple times. Evaluation of their ability to interact with AniA using enzyme-linked immunosorbent assay and computational docking studies revealed that C7-3 was the most promising inhibitor, binding near the type 2 copper site of the enzyme, which is responsible for interaction with nitrite. Subsequent enzymatic assays and biolayer interferometry with a synthetic C7-3 and its derivatives, C7-3m1 and C7-3m2, demonstrated potent inhibition of AniA. Finally, the MIC50 value of C7-3 and C7-3m2 against anaerobically grown N. gonorrhoeae was 0.6 mM. We present the first peptide inhibitors of AniA, an enzyme that should be further exploited for antigonococcal drug development.


Subject(s)
Bacterial Outer Membrane Proteins/antagonists & inhibitors , Gonorrhea/drug therapy , Neisseria gonorrhoeae/drug effects , Oxygen/metabolism , Peptides/antagonists & inhibitors , Anaerobiosis/drug effects , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Cell Surface Display Techniques , Crystallization , Enzyme-Linked Immunosorbent Assay , Gonorrhea/microbiology , Humans , Microbial Sensitivity Tests , Models, Molecular , Models, Structural , Mutagenesis, Site-Directed , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Nitrite Reductases/metabolism , Nitrites/metabolism
19.
Anal Chem ; 88(22): 10775-10784, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27732780

ABSTRACT

The cars we drive, the homes we live in, the restaurants we visit, and the laboratories and offices we work in are all a part of the modern human habitat. Remarkably, little is known about the diversity of chemicals present in these environments and to what degree molecules from our bodies influence the built environment that surrounds us and vice versa. We therefore set out to visualize the chemical diversity of five built human habitats together with their occupants, to provide a snapshot of the various molecules to which humans are exposed on a daily basis. The molecular inventory was obtained through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of samples from each human habitat and from the people that occupy those habitats. Mapping MS-derived data onto 3D models of the environments showed that frequently touched surfaces, such as handles (e.g., door, bicycle), resemble the molecular fingerprint of the human skin more closely than other surfaces that are less frequently in direct contact with humans (e.g., wall, bicycle frame). Approximately 50% of the MS/MS spectra detected were shared between people and the environment. Personal care products, plasticizers, cleaning supplies, food, food additives, and even medications that were found to be a part of the human habitat. The annotations indicate that significant transfer of chemicals takes place between us and our built environment. The workflows applied here will lay the foundation for future studies of molecular distributions in medical, forensic, architectural, space exploration, and environmental applications.


Subject(s)
Ecosystem , Mass Spectrometry , Organic Chemicals/analysis , Organic Chemicals/chemistry , Chromatography, Liquid , Humans , Ions/analysis , Tandem Mass Spectrometry
20.
Nat Chem Biol ; 9(4): 257-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23396078

ABSTRACT

Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild-type zebrafish and mice. To our surprise, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in nontransgenic animals, including humans.


Subject(s)
Ion Channels/metabolism , Light Signal Transduction/drug effects , Motor Activity/drug effects , Photochemical Processes/drug effects , Sensory Receptor Cells/drug effects , Small Molecule Libraries/pharmacology , Zebrafish Proteins/metabolism , Animals , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Cysteine/chemistry , Cysteine/metabolism , Electron Transport/drug effects , Electron Transport/radiation effects , Embryo, Nonmammalian , Humans , Ion Channels/agonists , Ion Channels/genetics , Lasers , Light , Light Signal Transduction/radiation effects , Mice , Motor Activity/physiology , Motor Activity/radiation effects , Mutation , Oxidation-Reduction , Photochemical Processes/radiation effects , Piperazines/pharmacology , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sensory Receptor Cells/physiology , Sensory Receptor Cells/radiation effects , Structure-Activity Relationship , TRPA1 Cation Channel , Transient Receptor Potential Channels , Zebrafish , Zebrafish Proteins/agonists , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL