Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Glob Chang Biol ; 29(9): 2466-2477, 2023 05.
Article in English | MEDLINE | ID: mdl-36806834

ABSTRACT

Long-term records of benthic macroinvertebrates in high-latitude streams are essential for understanding climatic changes, including extreme events (e.g. floods). Data extending over multiple decades are typically scarce. Here, we investigated macroinvertebrate community structural change (including alpha and beta diversity and gain and loss of species) over 22 years (1994-2016) in 10 stream systems across Denali National Park (Alaska, USA) in relation to climatological and meteorological drivers (e.g. air temperature, snowpack depth, precipitation). We hypothesised that increases in air temperature and reduced snowpack depth, due to climatic change, would reduce beta and gamma diversity but increase alpha diversity. Findings showed temporal trends in alpha diversity were variable across streams, with oscillating patterns in many snowmelt- and rainfall runoff-fed streams linked to climatic variation (temperature and precipitation), but increased over time in several streams supported by a mixture of water sources, including more stable groundwater-fed streams. Beta-diversity over the time series was highly variable, yet marked transitions were observed in response to extreme snowpack accumulation (1999-2000), where species loss drove turnover. Gamma diversity did not significantly increase or decrease over time. Investigating trends in individual taxa, several taxa were lost and gained during a relative constrained time period (2000-2006), likely in response to climatic variability and significant shifts in instream environmental conditions. Findings demonstrate the importance of long-term biological studies in stream ecosystems and highlight the vulnerability of high-latitude streams to climate change.


Subject(s)
Ecosystem , Invertebrates , Animals , Invertebrates/physiology , Rivers/chemistry , Temperature , Alaska
2.
J Anim Ecol ; 90(9): 2135-2146, 2021 09.
Article in English | MEDLINE | ID: mdl-34363703

ABSTRACT

Multidimensional analysis of community stability has recently emerged as an overarching approach to evaluating ecosystem response to disturbance. However, the approach has previously been applied only in experimental and modelling studies. We applied this concept to an 18-year time series (2000-2017) of macroinvertebrate community dynamics from a southeast Alaskan river to further develop and test the approach in relation to the effects of two extreme flood events occurring in 2005 (event 1) and 2014 (event 2). Five components of stability were calculated for pairs of pre- or post-event years. Individual components were tested for differences between pre- and post-event time periods. Stability components' pairwise correlations were assessed and ellipsoids of stability were developed for each time period and compared to a null model derived from the permuted dataset. Only one stability component demonstrated a significant difference between time periods. In contrast, 80% of moderate and significant correlations between stability components were degraded post-disturbance and significant changes to the form of stability ellipsoids were observed. Ellipsoids of stability for all periods after the initial disturbance (2005) were not different to the null model. Our results illustrate that the dimensionality of stability approach can be applied to natural ecosystem time-series data. The major increase in dimensionality of stability observed following disturbance potentially indicates significant shifts in the processes which drive stability following disturbance. This evidence improves our understanding of community response beyond what is possible through analysis of individual stability components.


Subject(s)
Ecosystem , Rivers , Animals , Floods , Invertebrates
3.
Bioscience ; 70(3): 220-236, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32174645

ABSTRACT

Glaciers have shaped past and present habitats for Pacific salmon (Oncorhynchus spp.) in North America. During the last glacial maximum, approximately 45% of the current North American range of Pacific salmon was covered in ice. Currently, most salmon habitat occurs in watersheds in which glacier ice is present and retreating. This synthesis examines the multiple ways that glacier retreat can influence aquatic ecosystems through the lens of Pacific salmon life cycles. We predict that the coming decades will result in areas in which salmon populations will be challenged by diminished water flows and elevated water temperatures, areas in which salmon productivity will be enhanced as downstream habitat suitability increases, and areas in which new river and lake habitat will be formed that can be colonized by anadromous salmon. Effective conservation and management of salmon habitat and populations should consider the impacts of glacier retreat and other sources of ecosystem change.

4.
Proc Natl Acad Sci U S A ; 114(37): 9770-9778, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28874558

ABSTRACT

Glaciers cover ∼10% of the Earth's land surface, but they are shrinking rapidly across most parts of the world, leading to cascading impacts on downstream systems. Glaciers impart unique footprints on river flow at times when other water sources are low. Changes in river hydrology and morphology caused by climate-induced glacier loss are projected to be the greatest of any hydrological system, with major implications for riverine and near-shore marine environments. Here, we synthesize current evidence of how glacier shrinkage will alter hydrological regimes, sediment transport, and biogeochemical and contaminant fluxes from rivers to oceans. This will profoundly influence the natural environment, including many facets of biodiversity, and the ecosystem services that glacier-fed rivers provide to humans, particularly provision of water for agriculture, hydropower, and consumption. We conclude that human society must plan adaptation and mitigation measures for the full breadth of impacts in all affected regions caused by glacier shrinkage.


Subject(s)
Agriculture/methods , Ecosystem , Global Warming , Ice Cover , Biodiversity , Climate , Food Chain , Humans , Hydrology , Rivers
5.
Glob Chang Biol ; 25(1): 230-244, 2019 01.
Article in English | MEDLINE | ID: mdl-30346098

ABSTRACT

Functional traits are increasingly being used to predict extinction risks and range shifts under long-term climate change scenarios, but have rarely been used to study vulnerability to extreme climatic events, such as supraseasonal droughts. In streams, drought intensification can cross thresholds of habitat loss, where marginal changes in environmental conditions trigger disproportionate biotic responses. However, these thresholds have been studied only from a structural perspective, and the existence of functional nonlinearity remains unknown. We explored trends in invertebrate community functional traits along a gradient of drought intensity, simulated over 18 months, using mesocosms analogous to lowland headwater streams. We modelled the responses of 16 traits based on a priori predictions of trait filtering by drought, and also examined the responses of trait profile groups (TPGs) identified via hierarchical cluster analysis. As responses to drought intensification were both linear and nonlinear, generalized additive models (GAMs) were chosen to model response curves, with the slopes of fitted splines used to detect functional thresholds during drought. Drought triggered significant responses in 12 (75%) of the a priori-selected traits. Behavioural traits describing movement (dispersal, locomotion) and diet were sensitive to moderate-intensity drought, as channels fragmented into isolated pools. By comparison, morphological and physiological traits showed little response until surface water was lost, at which point we observed sudden shifts in body size, respiration mode and thermal tolerance. Responses varied widely among TPGs, ranging from population collapses of non-aerial dispersers as channels fragmented to irruptions of small, eurythermic dietary generalists upon extreme dewatering. Our study demonstrates for the first time that relatively small changes in drought intensity can trigger disproportionately large functional shifts in stream communities, suggesting that traits-based approaches could be particularly useful for diagnosing catastrophic ecological responses to global change.


Subject(s)
Biota/physiology , Climate Change , Droughts , Invertebrates/physiology , Animals , Ecosystem , Models, Biological , Rivers
6.
Sci Rep ; 12(1): 20324, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36446833

ABSTRACT

Japanese macaques, Macaca fuscata, of Kamikochi in the Japanese Alps endure one of the coldest and harshest environments during winter when scarcity of food puts them at risk. However, various behaviors have evolved to mitigate potential mortality. These macaques typically eat bamboo leaves and the bark of woody plants in winter, but our previous study using the feces of Japanese macaques collected in the winter and DNA metabarcoding analysis revealed conclusively for the first time consumption of riverine benthos and brown trout. In this paper, we investigate how Japanese macaques hunt fish and collect these riverine biota by extensively observing their behavior, including the use of infrared sensor cameras. Many researchers have tracked Japanese macaques as part of behavioral and ecological studies, but previously the techniques by which Japanese macaques capture swimming fish has not been documented. Herein, for the first time we consider how novel macaque foraging behavior traits have evolved to secure valuable animal protein for winter survival when food resources are scarce.


Subject(s)
Macaca fuscata , Predatory Behavior , Animals , Fishes , Seasons
7.
Ecology ; 92(10): 1924-35, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22073784

ABSTRACT

Climate change and associated glacial recession create new stream habitat that leads to the assembly of new riverine communities through primary succession. However, there are still very few studies of the patterns and processes of community assembly during primary succession for stream ecosystems. We illustrate the rapidity with which biotic communities can colonize and establish in recently formed streams by examining Stonefly Creek in Glacier Bay, Alaska (USA), which began to emerge from a remnant glacial ice mass between 1976 and 1979. By 2002, 57 macroinvertebrate and 27 microcrustacea species had become established. Within 10 years of the stream's formation, pink salmon and Dolly Varden charr colonized, followed by other fish species, including juvenile red and silver salmon, Coast Range sculpin, and sticklebacks. Stable-isotope analyses indicate that marine-derived nitrogen from the decay of salmon carcasses was substantially assimilated within the aquatic food web by 2004. The findings from Stonefly Creek are compared with those from a long-term study of a similarly formed but older stream (12 km to the northeast) to examine possible similarities in macroinvertebrate community and biological trait composition between streams at similar stages of development. Macroinvertebrate community assembly appears to have been initially strongly deterministic owing to low water temperature associated with remnant ice masses. In contrast, microcrustacean community assembly appears to have been more stochastic. However, as stream age and water temperature increased, macroinvertebrate colonization was also more stochastic, and taxonomic similarity between Stonefly Creek and a stream at the same stage of development was <50%. However the most abundant taxa were similar, and functional diversity of the two communities was almost identical. Tolerance is suggested as the major mechanism of community assembly. The rapidity with which salmonids and invertebrate communities have become established across an entire watershed has implications for the conservation of biodiversity in freshwater habitats.


Subject(s)
Biological Evolution , Climate Change , Ecosystem , Ice Cover , Rivers , Alaska , Animals , Fishes/physiology , Invertebrates/physiology , Population Dynamics , Time Factors
8.
J Anim Ecol ; 80(4): 884-95, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21418207

ABSTRACT

1. Mesocosms are used extensively by ecologists to gain a mechanistic understanding of ecosystems based on the often untested assumption that these systems can replicate the key attributes of natural assemblages. 2. Previous investigations of stream mesocosm utility have explored community composition, but here for the first time, we extend the approach to consider the replicability and realism of food webs in four outdoor channels (4 m(2)). 3. The four food webs were similarly complex, consisting of diverse assemblages (61-71 taxa) with dense feeding interactions (directed connectance 0.09-0.11). Mesocosm food web structural attributes were within the range reported for 82 well-characterized food webs from natural streams and rivers. When compared with 112 additional food webs from standing freshwater, marine, estuarine and terrestrial environments, stream food webs (including mesocosms) had similar characteristic path lengths, but typically lower mean food chain length and exponents for the species-link relationship. 4. Body size (M) abundance (N) allometric scaling coefficients for trivariate taxonomic mesocosm food webs (-0.53 to -0.49) and individual size distributions (-0.60 to -0.58) were consistent and similar to those from natural systems, suggesting that patterns of energy flux between mesocosm consumers and resources were realistic approximations. 5. These results suggest that stream mesocosms of this scale can support replicate food webs with a degree of biocomplexity that is comparable to 'natural' streams. The findings highlight the potential value of mesocosms as model systems for performing experimental manipulations to test ecological theories, at spatiotemporal scales of relevance to natural ecosystems.


Subject(s)
Biota , Food Chain , Ecosystem , England , Rivers
9.
Sci Rep ; 11(1): 23091, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845236

ABSTRACT

The Japanese macaque (Macaca fuscata) is native to the main islands of Japan, except Hokkaido, and is the most northerly living non-human primate. In the Chubu Sangaku National Park of the Japanese Alps, macaques live in one of the coldest areas of the world, with snow cover limiting the availability of preferred food sources. Winter is typically a bottleneck for food availability potentially resulting in marked energy deficits, and mortality may result from famine. However, streams with groundwater upwelling flow during the winter with a constant water temperature of about 5 °C are easily accessible for Japanese macaques to search for riverine biota. We used metabarcoding (Cytochrome c oxidase I) of fecal samples from Japanese macaques to determine their wintertime diet. Here we provide the first robust evidence that Japanese macaques feed on freshwater biota, including brown trout, riverine insects and molluscs, in Chubu Sangaku National Park. These additional food sources likely aid their winter survival.


Subject(s)
Adaptation, Physiological , Cold Temperature , Fresh Water , Macaca fuscata/physiology , Animal Nutritional Physiological Phenomena , Animals , Biota , Diet , Electron Transport Complex IV/genetics , Feces , Fishes , Japan , Parks, Recreational , Primates , Seasons , Snow , Species Specificity
10.
Sci Total Environ ; 777: 146067, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33677285

ABSTRACT

Climate change is expected to intensify the effect of environmental stressors on riverine ecosystems. Extreme events, such as low flow and heatwaves, could have profound consequences for stream ecosystem functioning, but research on the impact of these stressors and their interaction across multiple processes, remains scarce. Here, we report the results of a two-month stream mesocosm experiment testing the effect of low flow (66% water level reduction, without gravel exposure) and heatwaves (three 8-d episodes of +5 °C above ambient with 10-15 days recovery between each episode) on a suite of ecosystem processes (i.e. detrital decomposition, biofilm accrual, ecosystem metabolism and DOC quantity and quality). Low flow reduced whole system metabolism, suppressing the rates of gross primary production (GPP) and ecosystem respiration (ER), but elevated DOC concentration. Overall, habitat contraction was the main driver of reduced ecosystem functioning in the low flow treatment. By contrast, heatwaves increased decomposition, algal accrual, and humic-like DOC, but reduced leaf decomposition efficiency. Net ecosystem production (NEP) generally decreased across the experiment but was most pronounced for low flow and heatwaves when occurring independently. Assessment of NEP responses to the three successive heatwave events revealed that responses later in the sequence were more reduced (i.e. more similar to controls), suggesting biofilm communities may acclimate to autumn heatwaves. However, when heatwaves co-occurred with low flow, a strong reduction in both ER and GPP was observed, suggesting increased microbial mortality and reduced acclimation. Our study reveals autumn heatwaves potentially elongate the growth season for primary producers and stimulate decomposers. With climate change, river ecosystems may become more heterotrophic, with faster processing of recalcitrant carbon. Further research is required to identify the impacts on higher trophic levels, meta-community dynamics and the potential for legacy effects generated by successive low flows and heatwaves.

11.
Nat Commun ; 12(1): 6816, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876560

ABSTRACT

Glacier retreat poses risks and benefits for species of cultural and economic importance. One example is Pacific salmon (Oncorhynchus spp.), supporting subsistence harvests, and commercial and recreational fisheries worth billions of dollars annually. Although decreases in summer streamflow and warming freshwater is reducing salmon habitat quality in parts of their range, glacier retreat is creating new streams and lakes that salmon can colonize. However, potential gains in future salmon habitat associated with glacier loss have yet to be quantified across the range of Pacific salmon. Here we project future gains in Pacific salmon freshwater habitat by linking a model of glacier mass change for 315 glaciers, forced by five different Global Climate Models, with a simple model of salmon stream habitat potential throughout the Pacific Mountain ranges of western North America. We project that by the year 2100 glacier retreat will create 6,146 (±1,619) km of new streams accessible for colonization by Pacific salmon, of which 1,930 (±569) km have the potential to be used for spawning and juvenile rearing, representing 0 to 27% gains within the 18 sub-regions we studied. These findings can inform proactive management and conservation of Pacific salmon in this era of rapid climate change.

12.
Ecol Evol ; 10(14): 7812-7825, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32760566

ABSTRACT

Alpine streams are typically fed from a range of water sources including glacial meltwater, snowmelt, groundwater flow, and surface rainfall runoff. These contributions are projected to shift with climate change, particularly in the Japanese Alps where snow is expected to decrease, but rainfall events increase. The overarching aim of the study was to understand the key variables driving macroinvertebrate community composition in groundwater and snowmelt-fed streams (n = 6) in the Kamikochi region of the northern Japanese Alps (April-December 2017). Macroinvertebrate abundance, species richness, and diversity were not significantly different between the two stream types. Community structure, however, was different between groundwater and snowmelt-fed streams with macroinvertebrate taxa specialized for the environmental conditions present in each system. Temporal variation in the abundance, species richness, and diversity of macroinvertebrate communities was also significantly different between groundwater and snowmelt streams over the study period, with snowmelt streams exhibiting far higher levels of variation. Two snowmelt streams considered perennial proved to be intermittent with periodic drying of the streambed, but the macroinvertebrates in these systems rebounded rapidly after flows resumed with no reduction in taxonomic diversity. These same streams, nevertheless, showed a major reduction in diversity and abundance following periods of high flow, indicating floods rather than periodic drying was a major driver of community structure. This conclusion was also supported from functional analyses, which showed that the more variable snowmelt streams were characterized by taxa with resistant, rather than resilient, life-history traits. The findings demonstrate the potential for significant turnover in species composition with changing environmental conditions in Japanese alpine stream systems, with groundwater-fed streams potentially more resilient to future changes in comparison to snowmelt-fed streams.

13.
Ecol Evol ; 8(16): 8354-8363, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30250708

ABSTRACT

Floods have a major influence in structuring river ecosystems. Considering projected increases in high-magnitude rainfall events with climate change, major flooding events are expected to increase in many regions of the world. However, there is uncertainty about the effect of different flooding regimes and the importance of flood timing in structuring riverine habitats and their associated biotic communities. In addition, our understanding of community response is hindered by a lack of long-term datasets to evaluate river ecosystem resilience to flooding. Here we show that in a river ecosystem studied for 30 years, a major winter flood reset the invertebrate community to a community similar to one that existed 15 years earlier. The community had not recovered to the preflood state when recurrent summer flooding 9 years later reset the ecosystem back to an even earlier community. Total macroinvertebrate density was reduced in the winter flood by an order of magnitude more than the summer flood. Meiofaunal invertebrates were more resilient to the flooding than macroinvertebrates, possibly due to their smaller body size facilitating greater access to in-stream refugia. Pacific pink salmon escapement was markedly affected by the winter flood when eggs were developing in redds, compared to summer flooding, which occurred before the majority of eggs were laid. Our findings inform a proposed conceptual model of three possible responses to flooding by the invertebrate community in terms of switching to different states and effects on resilience to future flooding events. In a changing climate, understanding these responses is important for river managers to mitigate the biological impacts of extreme flooding effects.

15.
Nat Ecol Evol ; 2(2): 325-333, 2018 02.
Article in English | MEDLINE | ID: mdl-29255301

ABSTRACT

Global change threatens invertebrate biodiversity and its central role in numerous ecosystem functions and services. Functional trait analyses have been advocated to uncover global mechanisms behind biodiversity responses to environmental change, but the application of this approach for invertebrates is underdeveloped relative to other organism groups. From an evaluation of 363 records comprising >1.23 million invertebrates collected from rivers across nine biogeographic regions on three continents, consistent responses of community trait composition and diversity to replicated gradients of reduced glacier cover are demonstrated. After accounting for a systematic regional effect of latitude, the processes shaping river invertebrate functional diversity are globally consistent. Analyses nested within individual regions identified an increase in functional diversity as glacier cover decreases. Community assembly models demonstrated that dispersal limitation was the dominant process underlying these patterns, although environmental filtering was also evident in highly glacierized basins. These findings indicate that predictable mechanisms govern river invertebrate community responses to decreasing glacier cover globally.


Subject(s)
Biodiversity , Global Warming , Ice Cover , Invertebrates/physiology , Rivers , Animals , Ecosystem , Europe , New Zealand , North America
16.
Article in English | MEDLINE | ID: mdl-27114576

ABSTRACT

Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world.


Subject(s)
Climate Change , Food Chain , Rivers , Ecosystem , Models, Biological
17.
Philos Trans R Soc Lond B Biol Sci ; 367(1605): 2990-7, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23007087

ABSTRACT

Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size-scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts.


Subject(s)
Body Weight , Climate Change , Food Chain , Animals , Biomass , Body Size , Computational Biology/methods , Computer Simulation , Droughts , Logistic Models , Population Density , Population Dynamics , Predatory Behavior
18.
Oecologia ; 155(4): 809-19, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18193289

ABSTRACT

Disturbance is integral to the organisation of riverine ecosystems. Fluctuating low flows caused by supra-seasonal drought and water management periodically dewater habitat patches, potentially creating heterogeneity in the taxonomic composition and successional dynamics of benthic communities. The frequency of disturbance induced by low flows is contingent upon the topography of the river bed and thus varies among patches. We investigated whether the frequency of patch dewatering influenced the structure and temporal dynamics of benthic algal communities attached to the upper surfaces of stones in stream mesocosms (4 m2). In a 693-day disturbance experiment, we applied short dewatering disturbances (6 days) at high (33-day cycles) and low frequencies (99-day cycles) and compared algal assemblages with undisturbed controls at 21 endpoints. In the absence of disturbance, epilithic space was dominated by the green encrusting alga Gongrosira incrustans. However, drying disturbances consistently reduced the dominance of the green alga, and crust abundance decreased with increasing disturbance frequency, thereby opening space for a diversity of mat-forming diatoms. The response of mat diatoms to disturbance varied markedly during the experiment, from strong reductions in the abundance of loosely attached mats in mid-late 2000 to the exploitation of open space by closely adhering mats in 2001. Contrary responses were attributed to changes in the species composition of mat diatoms, which influenced the physiognomy and hence stress-resistance and resilience of the assemblage. Our results indicate that patchy dewatering of habitat patches during periods of low flow influences the successional dynamics of algae, thereby creating distinctive mosaics on the stream bed.


Subject(s)
Biodiversity , Disasters , Eukaryota/physiology , Analysis of Variance , Population Density , Population Dynamics , Rivers , Time Factors
19.
Oecologia ; 148(4): 682-91, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16639570

ABSTRACT

Disturbances reduce the biota in stream ecosystems, and leave biological legacies, including remnant species, which potentially influence post-disturbance community development but are poorly understood. We investigated whether three remnant species, the snail Radix peregra, the mayfly Serratella ignita and the freshwater shrimp Gammarus pulex, affected community development in mesocosms that mimicked disturbed habitat patches in streams. Following 21 days of colonisation, we found that the occurrence of legacy effects depended on the identity of the remnant species. Radix had the strongest effect. By bulldozing epilithon, the snails acted as ecological engineers that promoted settlement of filter feeders (Simuliidae) and invertebrate predators (especially Pentaneura and Aphelocheirus) and strongly deterred settlement of non-predatory chironomids (e.g. Heterotrissocladius and Microtendipes). Gammarus increased in density (by 665%) where remnant, probably through rapid reproduction. Baetis and Pentaneura were scarce, and Asellus absent, in remnant Gammarus treatments, as a consequence of interference and/or predation by the amphipods. In contrast, Serratella tolerated the colonisation of immigrant species and did not affect the structure of the developing benthic community. Despite the observed effects on the presence and abundance of benthos, remnant fauna had no significant effect on assemblage taxon richness, or that of any specific trophic group. The contrasting effects of remnant species on immigrant colonisation echoed differences in their life-history traits and foraging behaviours. Our results indicate that biota can generate spatial patchiness of epilithon and benthic invertebrates in stream ecosystems.


Subject(s)
Amphipoda/physiology , Ecosystem , Fresh Water , Insecta/physiology , Snails/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL