Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Elife ; 122024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226092

ABSTRACT

Several metabolites have been shown to have independent and at times unexpected biological effects outside of their metabolic pathways. These include succinate, lactate, fumarate, and 2-hydroxyglutarate. 2-Hydroxybutyrate (2HB) is a byproduct of endogenous cysteine synthesis, produced during periods of cellular stress. 2HB rises acutely after exercise; it also rises during infection and is also chronically increased in a number of metabolic disorders. We show here that 2HB inhibits branched-chain aminotransferase enzymes, which in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPß-mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity in vitro. We found that repeated injection with 2HB can replicate the improvement to oxidative capacity that occurs following exercise training. Together, we show that 2-HB regulates fundamental aspects of skeletal muscle metabolism.


Subject(s)
Muscle Fatigue , Animals , Mice , Muscle, Skeletal/metabolism , Feedback, Physiological , ADP-Ribosylation , Transaminases/metabolism , Transaminases/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Sirtuins/metabolism , Sirtuins/genetics , Hydroxybutyrates/metabolism
2.
Cell Rep ; 42(9): 113013, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37632752

ABSTRACT

2-Hydroxyglutarate (2HG) is a byproduct of the tricarboxylic acid (TCA) cycle and is readily detected in the tissues of healthy individuals. 2HG is found in two enantiomeric forms: S-2HG and R-2HG. Here, we investigate the differential roles of these two enantiomers in cluster of differentiation (CD)8+ T cell biology, where we find they have highly divergent effects on proliferation, differentiation, and T cell function. We show here an analysis of structural determinants that likely underlie these differential effects on specific α-ketoglutarate (αKG)-dependent enzymes. Treatment of CD8+ T cells with exogenous S-2HG, but not R-2HG, increased CD8+ T cell fitness in vivo and enhanced anti-tumor activity. These data show that S-2HG and R-2HG should be considered as two distinct and important actors in the regulation of T cell function.


Subject(s)
Neoplasms , T-Lymphocytes, Cytotoxic , Humans , T-Lymphocytes, Cytotoxic/metabolism , CD8-Positive T-Lymphocytes/metabolism , Glutarates/metabolism , Neoplasms/metabolism , Isocitrate Dehydrogenase
SELECTION OF CITATIONS
SEARCH DETAIL