Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Diabetes Metab Disord ; 23(1): 1057-1069, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932808

ABSTRACT

Purpose: The Discovery of underlying intermediates associated with the development of dyslipidemia results in a better understanding of pathophysiology of dyslipidemia and their modification will be a promising preventive and therapeutic strategy for the management of dyslipidemia. Methods: The entire dataset was selected from the Surveillance of Risk Factors of Noncommunicable Diseases (NCDs) in 30 provinces of Iran (STEPs 2016 Country report in Iran) that included 1200 subjects and was stratified into four binary classes with normal and abnormal cases based on their levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and non-HDL-C.Plasma concentrations of 20 amino acids and 30 acylcarnitines in each class of dyslipidemia were evaluated using Tandem mass spectrometry. Then, these attributes, along with baseline characteristics data, were used to check whether machine learning (ML) algorithms could classify cases and controls. Results: Our ML framework accurately predicts TG binary classes. Among the models tested, the SVM model stood out, performing slightly better with an AUC of 0.81 and a standard deviation of test accuracy at 0.04. Consequently, it was chosen as the optimal model for TG classification. Moreover, the findings showed that alanine, phenylalanine, methionine, C3, C14:2, and C16 had great power in differentiating patients with high TG from normal TG controls. Conclusions: The comprehensive output of this work, along with sex-specific attributes, will improve our understanding of the underlying intermediates involved in dyslipidemia. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01384-9.

2.
Biochem Biophys Res Commun ; 404(2): 593-8, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21144826

ABSTRACT

The haplotype assembly problem seeks the haplotypes of an individual from which a set of aligned SNP fragments are available. The problem is important as the haplotypes contain all the SNP information, which is essential to such studies as the analysis of the association between specific diseases and their potential genetic causes. Using Minimum Error Correction as the objective function, the problem is NP-hard, which raises the demand for effective yet affordable solutions. In this paper, we propose a new method to solve the problem by providing a novel Max-2-SAT formulation for the problem. The proposed method is compared with several well-known algorithms proposed for the problem in the literature on a recent extensive benchmark, outperforming them all by achieving solutions of higher average quality.


Subject(s)
Algorithms , Haplotypes , Polymorphism, Single Nucleotide , Humans
SELECTION OF CITATIONS
SEARCH DETAIL