Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Insect Sci ; 18(4)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30137374

ABSTRACT

The foetida species complex comprises 13 Neotropical species in the ant genus Neoponera. Neoponera villosa Fabricius (1804) , Neoponera inversa Smith (1858), Neoponera bactronica Fernandes, Oliveira & Delabie (2013), and Neoponera curvinodis (Forel, 1899) have had an ambiguous taxonomic status for more than two decades. In southern Bahia, Brazil, these four species are frequently found in sympatry. Here we used Bayesian Inference and maximum likelihood analyses of COI and 16S mtDNA sequence data and conventional cytogenetic data together with observations on morphology to characterize sympatric populations of N. villosa, N. inversa, N. bactronica, and N. curvinodis. Our results showed marked differences in the karyotype of these ants. Both N. curvinodis and N. inversa have chromosome number of 2n = 30. Their chromosome composition, however, is distinct, which indicates that N. curvinodis is more closely related to N. bactronica. These four species clustered into three distinct groups. The close relationship between N. bactronica and N. curvinodis deserves further investigation since it has not been fully resolved here. Our results confirm that N. inversa, N. villosa, N. bactronica + N. curvinodis indeed represent four distinct taxa within the foetida species complex.


Subject(s)
Ants/classification , Chromosomes, Insect , Karyotype , Animals , Ants/anatomy & histology , Ants/genetics , Brazil , DNA, Mitochondrial/analysis , Electron Transport Complex IV/analysis , RNA, Ribosomal, 16S/analysis , Sequence Analysis, DNA
2.
Cytogenet Genome Res ; 150(1): 68-75, 2016.
Article in English | MEDLINE | ID: mdl-27829247

ABSTRACT

Samples from 861 colonies of 12 Partamona species from 125 Brazilian localities were analysed for a SCAR marker specific to the B chromosomes of P. helleri. We identified the SCAR marker in 6 of the 12 species analysed, including 2 (P. gregaria and P. chapadicola) from the pearsoni clade. This is the first report on the presence of this marker in Partamona species that are not included in the cupira clade, which indicates that the B chromosomes probably are more widespread in this genus than previously thought. The analysis revealed a high frequency of the SCAR marker in the samples of P. helleri (0.47), P. cupira (0.46), and P. rustica (0.29), and a low frequency in P. aff. helleri (0.06). The frequency of the marker in P. helleri was correlated with the latitude of the sampling locality, decreasing from north to south. Sequence data on the SCAR marker from 50 individuals of the 6 species in which the presence of this marker was shown revealed a new scenario for the origin of the B chromosomes in Partamona.


Subject(s)
Bees/genetics , Chromosomes, Insect/genetics , Evolution, Molecular , Animals , Bees/classification , Brazil , Genetic Markers , Sequence Analysis, DNA
3.
Sci Rep ; 6: 26635, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27211350

ABSTRACT

Animal societies exhibit remarkable variation in their breeding strategies. Individuals can maximize their fitness by either reproducing or by helping relatives. Social hymenopterans have been key taxa for the study of Hamilton's inclusive fitness theory because the haplodiploid sex-determination system results in asymmetric relatedness among breeders producing conflict over the partitioning of reproduction. In small cooperative groups of insects, totipotent individuals may maximize their inclusive fitness by controlling reproduction despotically rather than helping their relatives. Here, we demonstrate that the dominant females of the primitively eusocial bee Euglossa melanotricha (Apidae: Euglossini) control reproduction, but concede part of the reproductive output with their related and unrelated subordinates. As expected, a dominant female capitalizes on the direct reproduction of related subordinates, according to her interests. We found that reproductive skew was positively correlated with relatedness. The concessions were highly reduced in mother-daughter and sibling nests (relatedness r ± s.d. = 0.54 ± 0.02 and 0.79 ± 0.02, respectively) but much more egalitarian in unrelated associations (r = -0.10 ± 0.01). We concluded that reproductive skew in these primitively eusocial bees is strongly related to the genetic structure of associations, and also that females are able to assess pairwise relatedness, either directly or indirectly, and use this information to mediate social contracts.


Subject(s)
Bees/physiology , Behavior, Animal/physiology , Social Behavior , Animals , Female , Male , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL