Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Hum Genomics ; 16(1): 30, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35932045

ABSTRACT

BACKGROUND: The prevalence and genetic spectrum of cardiac channelopathies exhibit population-specific differences. We aimed to understand the spectrum of cardiac channelopathy-associated variations in India, which is characterised by a genetically diverse population and is largely understudied in the context of these disorders. RESULTS: We utilised the IndiGenomes dataset comprising 1029 whole genomes from self-declared healthy individuals as a template to filter variants in 36 genes known to cause cardiac channelopathies. Our analysis revealed 186,782 variants, of which we filtered 470 variants that were identified as possibly pathogenic (440 nonsynonymous, 30 high-confidence predicted loss of function ). About 26% (124 out of 470) of these variants were unique to the Indian population as they were not reported in the global population datasets and published literature. Classification of 470 variants by ACMG/AMP guidelines unveiled 13 pathogenic/likely pathogenic (P/LP) variants mapping to 19 out of the 1029 individuals. Further query of 53 probands in an independent cohort of cardiac channelopathy, using exome sequencing, revealed the presence of 3 out of the 13 P/LP variants. The identification of p.G179Sfs*62, p.R823W and c.420 + 2 T > C variants in KCNQ1, KCNH2 and CASQ2 genes, respectively, validate the significance of the P/LP variants in the context of clinical applicability as well as for large-scale population analysis. CONCLUSION: A compendium of ACMG/AMP classified cardiac channelopathy variants in 1029 self-declared healthy Indian population was created. A conservative genotypic prevalence was estimated to be 0.9-1.8% which poses a huge public health burden for a country with large population size like India. In the majority of cases, these disorders are manageable and the risk of sudden cardiac death can be alleviated by appropriate lifestyle modifications as well as treatment regimens/clinical interventions. Clinical utility of the obtained variants was demonstrated using a cardiac channelopathy patient cohort. Our study emphasises the need for large-scale population screening to identify at-risk individuals and take preventive measures. However, we suggest cautious clinical interpretation to be exercised by taking other cardiac channelopathy risk factors into account.


Subject(s)
Channelopathies , Humans , Channelopathies/epidemiology , Channelopathies/genetics , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/pathology , Exome Sequencing , India/epidemiology
2.
Int J Immunogenet ; 50(3): 134-143, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37160415

ABSTRACT

Genetic variants in human platelet antigens (HPAs) considered allo- or auto antigens are associated with various disorders, including neonatal alloimmune thrombocytopenia, platelet transfusion refractoriness and post-transfusion purpura. Although global differences in genotype frequencies were observed, the distributions of HPA variants in the Indian population are largely unknown. This study aims to explore the landscape of HPA variants in India to provide a basis for risk assessment and management of related complications. Population-specific frequencies of genetic variants associated with the 35 classes of HPAs (HPA-1 to HPA-35) were estimated by systematically analysing genomic variations of 1029 healthy Indian individuals as well as from global population genome datasets. Allele frequencies of the most clinically relevant HPA systems in the Indian population were found as follows, HPA-1a - 0.884, HPA-1b - 0.117, HPA-2a - 0.941, HPA-2b - 0.059, HPA-3a - 0.653, HPA-3b - 0.347, HPA-4a - 0.999, HPA-4b - 0.0010, HPA-5a - 0.923, HPA-5b - 0.077, HPA-6a - 0.998, HPA-6b - 0.002, HPA-15a - 0.582 and HPA-15b - 0.418. This study provides the first comprehensive analysis of HPA allele and genotype frequencies using large scale representative whole genome sequencing data of the Indian population.


Subject(s)
Antigens, Human Platelet , Humans , Infant, Newborn , Alleles , Antigens, Human Platelet/genetics , Asian People/genetics , Gene Frequency , Genotype , India
3.
Nucleic Acids Res ; 49(D1): D1225-D1232, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33095885

ABSTRACT

With the advent of next-generation sequencing, large-scale initiatives for mining whole genomes and exomes have been employed to better understand global or population-level genetic architecture. India encompasses more than 17% of the world population with extensive genetic diversity, but is under-represented in the global sequencing datasets. This gave us the impetus to perform and analyze the whole genome sequencing of 1029 healthy Indian individuals under the pilot phase of the 'IndiGen' program. We generated a compendium of 55,898,122 single allelic genetic variants from geographically distinct Indian genomes and calculated the allele frequency, allele count, allele number, along with the number of heterozygous or homozygous individuals. In the present study, these variants were systematically annotated using publicly available population databases and can be accessed through a browsable online database named as 'IndiGenomes' http://clingen.igib.res.in/indigen/. The IndiGenomes database will help clinicians and researchers in exploring the genetic component underlying medical conditions. Till date, this is the most comprehensive genetic variant resource for the Indian population and is made freely available for academic utility. The resource has also been accessed extensively by the worldwide community since it's launch.


Subject(s)
Databases, Genetic , Genetic Variation , Genome, Human , Human Genome Project , Software , Adult , Exome , Female , Genetics, Population/statistics & numerical data , Humans , India , Internet , Male , Molecular Sequence Annotation , Whole Genome Sequencing
4.
Clin Neurophysiol ; 164: 130-137, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38870669

ABSTRACT

OBJECTIVE: Disrupted brain network connectivity underlies major depressive disorder (MDD). Altered EEG based Functional connectivity (FC) with Emotional stimuli in major depressive disorder (MDD) in addition to resting state FC may help in improving the diagnostic accuracy of machine learning classification models. We explored the potential of EEG-based FC during resting state and emotional processing, for diagnosing MDD using machine learning approach. METHODS: EEG was recorded during resting state and while watching emotionally contagious happy and sad videos in 24 drug-naïve MDD patients and 25 healthy controls. FC was quantified using the Phase Lag Index. Three Random Forest classifier models were constructed to classify MDD patients and healthy controls, Model-I incorporating FC features from the resting state and Model-II and Model-III incorporating FC features while watching happy and sad videos respectively. RESULTS: Important features distinguishing MDD and healthy controls were from all frequency bands and represent functional connectivity between fronto-temporal, fronto-parietal and fronto occipital regions. The cross-validation accuracies for Model-I, Model-II and Model-III were 92.3%, 94.9% and 89.7% and test accuracies were 60%, 80% and 70% respectively. Incorporating emotionally contagious videos improved the classification accuracies. CONCLUSION: Findings support EEG FC patterns during resting state and emotional processing along with machine learning can be used to diagnose MDD. Future research should focus on replicating and validating these results. SIGNIFICANCE: EEG FC pattern combined with machine learning may be used for assisting in diagnosing MDD.

5.
Comput Biol Chem ; 112: 108118, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38878606

ABSTRACT

Mitochondrial disorders are a class of heterogeneous disorders caused by genetic variations in the mitochondrial genome (mtDNA) as well as the nuclear genome. The spectrum of mtDNA variants remains unexplored in the Indian population. In the present study, we have cataloged 2689 high confidence single nucleotide variants, small insertions and deletions in mtDNA in 1029 healthy Indian individuals. We found a major proportion (76.5 %) of the variants being rare (AF<=0.005) in the studied population. Intriguingly, we found two 'confirmed' pathogenic variants (m.1555 A>G and m.14484 T>C) with a frequency of ∼1 in 250 individuals in our dataset. The high carrier frequency underscores the need for screening of the mtDNA pathogenic mutations in newborns in India. Interestingly, our analysis also revealed 202 variants in our dataset which have been 'reported' in disease cases as per the MITOMAP database. Additionally, we found the frequency of haplogroup M (52.2 %) to be the highest among all the 18 top-level haplogroups found in our dataset. In comparison to the global population datasets, 20 unique mtDNA variants are found in the Indian population. We hope the whole genome sequencing based compendium of mtDNA variants along with their allele frequencies and heteroplasmy levels in the Indian population will drive additional genome scale studies for mtDNA. Furthermore, the identification of clinically relevant variants in our dataset will aid in better clinical interpretation of the variants in mitochondrial disorders.

6.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471670

ABSTRACT

INTRODUCTION: Genetic variants contribute to differential responses to non-insulin antidiabetic drugs (NIADs), and consequently to variable plasma glucose control. Optimal control of plasma glucose is paramount to minimizing type 2 diabetes-related long-term complications. India's distinct genetic architecture and its exploding burden of type 2 diabetes warrants a population-specific survey of NIAD-associated pharmacogenetic (PGx) variants. The recent availability of large-scale whole genomes from the Indian population provides a unique opportunity to generate a population-specific map of NIAD-associated PGx variants. RESEARCH DESIGN AND METHODS: We mined 1029 Indian whole genomes for PGx variants, drug-drug interaction (DDI) and drug-drug-gene interactions (DDGI) associated with 44 NIADs. Population-wise allele frequencies were estimated and compared using Fisher's exact test. RESULTS: Overall, we found 76 known and 52 predicted deleterious common PGx variants associated with response to type 2 diabetes therapy among Indians. We report remarkable interethnic differences in the relative cumulative counts of decreased and increased response-associated alleles across NIAD classes. Indians and South Asians showed a significant excess of decreased metformin response-associated alleles compared with other global populations. Network analysis of shared PGx genes predicts high DDI risk during coadministration of NIADs with other metabolic disease drugs. We also predict an increased CYP2C19-mediated DDGI risk for CYP3A4/3A5-metabolized NIADs, saxagliptin, linagliptin and glyburide when coadministered with proton-pump inhibitors (PPIs). CONCLUSIONS: Indians and South Asians have a distinct PGx profile for antidiabetes drugs, marked by an excess of poor treatment response-associated alleles for various NIAD classes. This suggests the possibility of a population-specific reduced drug response in atleast some NIADs. In addition, our findings provide an actionable resource for accelerating future diabetes PGx studies in Indians and South Asians and reconsidering NIAD dosing guidelines to ensure maximum efficacy and safety in the population.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Humans , Hypoglycemic Agents/therapeutic use , Pharmacogenomic Variants , Diabetes Mellitus, Type 2/drug therapy , Insulin/therapeutic use , Gene Frequency , Insulin, Regular, Human
7.
Pharmacogenomics ; 25(3): 147-160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38426301

ABSTRACT

Aim: The CYP2D6 gene is highly polymorphic, causing large interindividual variability in the metabolism of several clinically important drugs. Materials & methods: The authors investigated the diversity and distribution of CYP2D6 alleles in Indians using whole genome sequences (N = 1518). Functional consequences were assessed using pathogenicity scores and molecular dynamics simulations. Results: The analysis revealed population-specific CYP2D6 alleles (*86, *7, *111, *112, *113, *99) and remarkable differences in variant and phenotype frequencies with global populations. The authors observed that one in three Indians could benefit from a dose alteration for psychiatric drugs with accurate CYP2D6 phenotyping. Molecular dynamics simulations revealed large conformational fluctuations, confirming the predicted reduced function of *86 and *113 alleles. Conclusion: The findings emphasize the utility of comprehensive CYP2D6 profiling for aiding precision public health.


Subject(s)
Cytochrome P-450 CYP2D6 , Genomics , Humans , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Alleles , Phenotype , Genotype
8.
Mitochondrion ; 75: 101844, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237647

ABSTRACT

Genomic investigations on an infant who presented with a putative mitochondrial disorder led to identification of compound heterozygous deletion with an overlapping region of ∼142 kb encompassing two nuclear encoded genes namely ERCC8 and NDUFAF2. Investigations on fetal-derived fibroblast culture demonstrated impaired bioenergetics and mitochondrial dysfunction, which explains the phenotype and observed infant mortality in the present study. The genetic findings from this study extended the utility of whole-genome sequencing as it led to development of a MLPA-based assay for carrier screening in the extended family and the prenatal testing aiding in the birth of two healthy children.


Subject(s)
Infant Mortality , Mitochondria , Infant , Child , Pregnancy , Female , Humans , Mitochondria/genetics , Whole Genome Sequencing , Energy Metabolism , Genomics , Transcription Factors/genetics , DNA Repair Enzymes/genetics , Molecular Chaperones/genetics , Mitochondrial Proteins/genetics
9.
HLA ; 101(3): 262-269, 2023 03.
Article in English | MEDLINE | ID: mdl-36502377

ABSTRACT

Antibodies against human neutrophil antigens (HNAs) play a significant role in various clinical conditions such as neonatal alloimmune neutropenia, transfusion-related acute lung injury, and other nonhemolytic transfusion reactions. This study aims to identify the genotype and allele frequencies of HNAs in the healthy Indian population. Ten genetic variants in four human genes encoding alleles of HNAs class I-V approved by the International Society of Blood Transfusion-Granulocyte Immunobiology Working Party were used in the analysis. Genetic variants from whole genome sequences of 1029 healthy Indian individuals corresponding to HNA alleles were analyzed. The frequencies of the variants were compared with global population datasets using an in-house computational pipeline. In HNA class I, allele frequencies of FCGR3B*01, FCGR3B*02, and FCGR3B*03 encoding HNA-1a, HNA-1b, and HNA-1c were 0.07, 0.8, and 0.13, respectively. HNA class 3 alleles namely SLC44A2*01 (encoding HNA-3a) and SLC44A2*02 (encoding HNA-3b) were found at allele frequencies of 0.78 and 0.22, respectively. The frequencies of ITGAM*01 encoding HNA-4a and ITGAM*02 encoding HNA-4a were 0.95 and 0.05, respectively. Furthermore, allele frequencies of HNA class 5 alleles were 0.32 for ITGAL*01 (encoding HNA-5a) and 0.68 for ITGAL*02 (encoding HNA-5b). Interestingly, it was also found that rs2230433 variant deciding the HNA class 5 alleles, was highly prevalent (78.2%) in the Indian population compared with other global populations. This study presents the first comprehensive report of HNA allele and genotype frequencies in the Indian population using population genome datasets of 1029 individuals. Significant difference was observed in the prevalence of HNA5a and HNA5b in India in comparison to other global populations.


Subject(s)
Asian People , Isoantigens , Neutrophils , Humans , Alleles , Gene Frequency , Genotype , India , Isoantigens/genetics
10.
Front Pharmacol ; 13: 858345, 2022.
Article in English | MEDLINE | ID: mdl-35865963

ABSTRACT

India confines more than 17% of the world's population and has a diverse genetic makeup with several clinically relevant rare mutations belonging to many sub-group which are undervalued in global sequencing datasets like the 1000 Genome data (1KG) containing limited samples for Indian ethnicity. Such databases are critical for the pharmaceutical and drug development industry where diversity plays a crucial role in identifying genetic disposition towards adverse drug reactions. A qualitative and comparative sequence and structural study utilizing variant information present in the recently published, largest curated Indian genome database (IndiGen) and the 1000 Genome data was performed for variants belonging to the kinase coding genes, the second most targeted group of drug targets. The sequence-level analysis identified similarities and differences among different populations based on the nsSNVs and amino acid exchange frequencies whereas a comparative structural analysis of IndiGen variants was performed with pathogenic variants reported in UniProtKB Humsavar data. The influence of these variations on structural features of the protein, such as structural stability, solvent accessibility, hydrophobicity, and the hydrogen-bond network was investigated. In-silico screening of the known drugs to these Indian variation-containing proteins reveals critical differences imparted in the strength of binding due to the variations present in the Indian population. In conclusion, this study constitutes a comprehensive investigation into the understanding of common variations present in the second largest population in the world and investigating its implications in the sequence, structural and pharmacogenomic landscape. The preliminary investigation reported in this paper, supporting the screening and detection of ADRs specific to the Indian population could aid in the development of techniques for pre-clinical and post-market screening of drug-related adverse events in the Indian population.

11.
NAR Genom Bioinform ; 4(1): lqac009, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35178516

ABSTRACT

Actively retrotransposing primate-specific Alu repeats display insertion-deletion (InDel) polymorphism through their insertion at new loci. In the global datasets, Indian populations remain under-represented and so do their Alu InDels. Here, we report the genomic landscape of Alu InDels from the recently released 1021 Indian Genomes (IndiGen) (available at https://clingen.igib.res.in/indigen). We identified 9239 polymorphic Alu insertions that include private (3831), rare (3974) and common (1434) insertions with an average of 770 insertions per individual. We achieved an 89% PCR validation of the predicted genotypes in 94 samples tested. About 60% of identified InDels are unique to IndiGen when compared to other global datasets; 23% of sites were shared with both SGDP and HGSVC; among these, 58% (1289 sites) were common polymorphisms in IndiGen. The insertions not only show a bias for genic regions, with a preference for introns but also for the associated genes showing enrichment for processes like cell morphogenesis and neurogenesis (P-value < 0.05). Approximately, 60% of InDels mapped to genes present in the OMIM database. Finally, we show that 558 InDels can serve as ancestry informative markers to segregate global populations. This study provides a valuable resource for baseline Alu InDels that would be useful in population genomics.

12.
Clin Transl Sci ; 15(4): 866-877, 2022 04.
Article in English | MEDLINE | ID: mdl-35338580

ABSTRACT

Ethnic differences in pharmacogenomic (PGx) variants have been well documented in literature and could significantly impact variability in response and adverse events to therapeutics. India is a large country with diverse ethnic populations of distinct genetic architecture. India's national genome sequencing initiative (IndiGen) provides a unique opportunity to explore the landscape of PGx variants using population-scale whole genome sequences. We have analyzed the IndiGen variation dataset (N = 1029 genomes) along with global population scale databases to map the most prevalent clinically actionable and potentially deleterious PGx variants among Indians. Differential frequencies for the known and novel variants were studied and interaction of the disrupted PGx genes affecting drug responses were analyzed by performing a pathway analysis. We have highlighted significant differences in the allele frequencies of clinically actionable PGx variants in Indians when compared to the global populations. We identified 134 mostly common (allele frequency [AF] > 0.1) potentially deleterious PGx variants that could alter or inhibit the function of 102 pharmacogenes in Indians. We also estimate that on, an average, each Indian individual carried eight PGx variants (single nucleotide variants) that have a direct impact on the choice of treatment or drug dosing. We have also highlighted clinically actionable PGx variants and genes for which preemptive genotyping is most recommended for the Indian population. The study has put forward the most comprehensive PGx landscape of the Indian population from whole genomes that could enable optimized drug selection and genotype-guided prescriptions for improved therapeutic outcomes and minimizing adverse events.


Subject(s)
Genome, Human , Pharmacogenetics , Asian People , Gene Frequency , Genetics, Population , Genotype , Humans
13.
Front Genet ; 13: 878134, 2022.
Article in English | MEDLINE | ID: mdl-35903357

ABSTRACT

Perception and preferences for food and beverages determine dietary behaviour and health outcomes. Inherent differences in chemosensory genes, ethnicity, geo-climatic conditions, and sociocultural practices are other determinants. We aimed to study the variation landscape of chemosensory genes involved in perception of taste, texture, odour, temperature and burning sensations through analysis of 1,029 genomes of the IndiGen project and diverse continental populations. SNPs from 80 chemosensory genes were studied in whole genomes of 1,029 IndiGen samples and 2054 from the 1000 Genomes project. Population genetics approaches were used to infer ancestry of IndiGen individuals, gene divergence and extent of differentiation among studied populations. 137,760 SNPs including common and rare variants were identified in IndiGenomes with 62,950 novel (46%) and 48% shared with the 1,000 Genomes. Genes associated with olfaction harbored most SNPs followed by those associated with differences in perception of salt and pungent tastes. Across species, receptors for bitter taste were the most diverse compared to others. Three predominant ancestry groups within IndiGen were identified based on population structure analysis. We also identified 1,184 variants that exhibit differences in frequency of derived alleles and high population differentiation (FST ≥0.3) in Indian populations compared to European, East Asian and African populations. Examples include ADCY10, TRPV1, RGS6, OR7D4, ITPR3, OPRM1, TCF7L2, and RUNX1. This is a first of its kind of study on baseline variations in genes that could govern cuisine designs, dietary preferences and health outcomes. This would be of enormous utility in dietary recommendations for precision nutrition both at population and individual level.

14.
Hum Immunol ; 83(4): 335-345, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35074268

ABSTRACT

X-linked agammaglobulinemia (XLA) is an X-linked recessive primary immunodeficiency disorder caused due to a pathogenic variant in the Bruton tyrosine (BTK) gene with an incidence of 1:379,000 live births and 1:190,000 male births. Patients affected with XLA present with recurrent infections of the gastrointestinal and respiratory tracts. Here we report the first case series of 17 XLA patients of 10 South Indian families with a wide spectrum of clinical and genetic features. In our cohort, patients presented mainly with recurrent pneumonia, gastrointestinal infection, otitis media, pyoderma, abscesses, empyema, arthritis, and osteomyelitis. Using next-generation and Sanger sequencing we have identified 10 unique pathogenic and likely pathogenic variants in 17 patients. This encompasses three nonsynonymous, two stop-gain, two frameshifts, two structural, and one splicing variant, out of which two of them are novel. Based on the type of variant, patients had variable clinical features and treatment responses. We have also evaluated Btk protein expression for six patients in comparison to the healthy individuals and determined mosaic Btk expression patterns in four mothers. We have also performed family screening in 6 families using Sanger sequencing and identified 19 carriers for the variant. The diagnosis for the patients led to the proper treatment i.e. 15 patients were on intravenous immunoglobulin (IVIG) and the other two had successful hematopoietic stem cell transplantation (HSCT). Unfortunately, two of our patients died due to sepsis, while on IVIG. We envision the present study could help in better understanding of patients with XLA and help in family screening and prenatal diagnosis. To the best of our knowledge, this is the largest case series of patients affected with XLA from South India.


Subject(s)
Agammaglobulinemia , Genetic Diseases, X-Linked , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinemia/diagnosis , Agammaglobulinemia/genetics , Child , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/therapy , Humans , Immunoglobulins, Intravenous/therapeutic use , Male , Mutation
15.
Cell Cycle ; 20(9): 903-913, 2021 05.
Article in English | MEDLINE | ID: mdl-33870855

ABSTRACT

Differences in human phenotypes and susceptibility to complex diseases are an outcome of genetic and environmental interactions. This is evident in diseases that progress through a common set of intermediate patho-endophenotypes. Precision medicine aims to delineate molecular players for individualized and early interventions. Functional studies of lymphoblastoid cell line (LCL) model of phenotypically well-characterized healthy individuals can help deconvolute and validate these molecular mechanisms. In this study, LCLs are developed from eight healthy individuals belonging to three extreme constitution types, deep phenotyped on the basis of Ayurveda. LCLs were characterized by karyotyping and immunophenotyping. Growth characteristics and response to UV were studied in these LCLs. Significant differences in cell proliferation rates were observed between the contrasting groups such that one type (Kapha) proliferates significantly slower than the other two (Vata, Pitta). In response to UV, one of the fast growing groups (Vata) shows higher cell death but recovers its numbers due to an inherent higher rates of proliferation. This study reveals that baseline differences in cell proliferation could be a key to understanding the survivability of cells under UV stress. Variability in baseline cellular phenotypes not only explains the cellular basis of different constitution types but can also help set priors during the design of an individualized therapy with DNA damaging agents. This is the first study of its kind that shows variability of intermediate patho-phenotypes among healthy individuals with potential implications in precision medicine.


Subject(s)
Lymphocytes/cytology , Lymphocytes/radiation effects , Ultraviolet Rays , Biomarkers/metabolism , Cell Cycle/radiation effects , Cell Line , Cell Proliferation/radiation effects , Humans , Ki-67 Antigen/metabolism , Kinetics , Phenotype
16.
Pharmacogenomics ; 22(10): 603-618, 2021 07.
Article in English | MEDLINE | ID: mdl-34142560

ABSTRACT

Aim: Numerous drugs are being widely prescribed for COVID-19 treatment without any direct evidence for the drug safety/efficacy in patients across diverse ethnic populations. Materials & methods: We analyzed whole genomes of 1029 Indian individuals (IndiGen) to understand the extent of drug-gene (pharmacogenetic), drug-drug and drug-drug-gene interactions associated with COVID-19 therapy in the Indian population. Results: We identified 30 clinically significant pharmacogenetic variants and 73 predicted deleterious pharmacogenetic variants. COVID-19-associated pharmacogenes were substantially overlapped with those of metabolic disorder therapeutics. CYP3A4, ABCB1 and ALB are the most shared pharmacogenes. Fifteen COVID-19 therapeutics were predicted as likely drug-drug interaction candidates when used with four CYP inhibitor drugs. Conclusion: Our findings provide actionable insights for future validation studies and improved clinical decisions for COVID-19 therapy in Indians.


Subject(s)
COVID-19 Drug Treatment , COVID-19/genetics , Antiviral Agents/therapeutic use , Asian People , Drug Interactions/genetics , Genome/genetics , Genotype , Humans , India , Pharmacogenetics/methods , Pharmacogenomic Testing/methods , Pharmacogenomic Variants/genetics , SARS-CoV-2/drug effects
17.
J Genet Eng Biotechnol ; 19(1): 183, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34905135

ABSTRACT

BACKGROUND: Autoinflammatory disorders are the group of inherited inflammatory disorders caused due to the genetic defect in the genes that regulates innate immune systems. These have been clinically characterized based on the duration and occurrence of unprovoked fever, skin rash, and patient's ancestry. There are several autoinflammatory disorders that are found to be prevalent in a specific population and whose disease genetic epidemiology within the population has been well understood. However, India has a limited number of genetic studies reported for autoinflammatory disorders till date. The whole genome sequencing and analysis of 1029 Indian individuals performed under the IndiGen project persuaded us to perform the genetic epidemiology of the autoinflammatory disorders in India. RESULTS: We have systematically annotated the genetic variants of 56 genes implicated in autoinflammatory disorder. These genetic variants were reclassified into five categories (i.e., pathogenic, likely pathogenic, benign, likely benign, and variant of uncertain significance (VUS)) according to the American College of Medical Genetics and Association of Molecular pathology (ACMG-AMP) guidelines. Our analysis revealed 20 pathogenic and likely pathogenic variants with significant differences in the allele frequency compared with the global population. We also found six causal founder variants in the IndiGen dataset belonging to different ancestry. We have performed haplotype prediction analysis for founder mutations haplotype that reveals the admixture of the South Asian population with other populations. The cumulative carrier frequency of the autoinflammatory disorder in India was found to be 3.5% which is much higher than reported. CONCLUSION: With such frequency in the Indian population, there is a great need for awareness among clinicians as well as the general public regarding the autoinflammatory disorder. To the best of our knowledge, this is the first and most comprehensive population scale genetic epidemiological study being reported from India.

18.
PLoS One ; 15(8): e0237999, 2020.
Article in English | MEDLINE | ID: mdl-32822427

ABSTRACT

Hyper-IgD syndrome (HIDS, OMIM #260920) is a rare autosomal recessive autoinflammatory disorder caused by pathogenic variants in the mevalonate kinase (MVK) gene. HIDS has an incidence of 1:50,000 to 1:5,000, and is thought to be prevalent mainly in northern Europe. Here, we report a case series of HIDS from India, which includes ten patients from six families who presented with a wide spectrum of clinical features such as recurrent fever, oral ulcers, rash, arthritis, recurrent diarrhea, hepatosplenomegaly, and high immunoglobulin levels. Using whole exome sequencing (WES) and/or Sanger capillary sequencing, we identified five distinct genetic variants in the MVK gene from nine patients belonging to six families. The variants were classified as pathogenic or likely pathogenic as per the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines for annotation of sequence variants. Over 70% of patients in the present study had two recurrent mutations in MVK gene i.e. a nonsynonymous variant p.V377I, popularly known as the 'Dutch mutation', along with a splicing variant c.226+2delT in a compound heterozygous form. Identity by descent analysis in two patients with the recurrent variants identified a 6.7 MB long haplotype suggesting a founder effect in the South Indian population. Our analysis suggests that a limited number of variants account for the majority of the patients with HIDS in South India. This has implications in clinical diagnosis, as well as in the development of cost-effective approaches for genetic diagnosis and screening. To our best knowledge, this is the first and most comprehensive case series of clinically and genetically characterized patients with HIDS from India.


Subject(s)
Asian People/genetics , Mevalonate Kinase Deficiency/pathology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adolescent , Child, Preschool , Female , Gene Deletion , Genetic Association Studies , Haplotypes , Heterozygote , Humans , India , Infant , Male , Mevalonate Kinase Deficiency/genetics , Pedigree , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Polymorphism, Single Nucleotide , Protein Structure, Tertiary , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL