Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Diabetologia ; 67(2): 356-370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38032369

ABSTRACT

AIMS/HYPOTHESIS: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS: Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION: RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Bypass , Humans , Animals , Mice , Glucagon-Like Peptide 1/metabolism , Gastric Bypass/methods , L Cells , Diabetes Mellitus, Type 2/metabolism , RNA , Mice, Inbred C57BL , Sequence Analysis, RNA , Cholesterol , RNA, Messenger , Blood Glucose/metabolism
2.
Biol Chem ; 400(8): 1023-1033, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-30738010

ABSTRACT

The role of Zn2+-sensing receptor GPR39 on glucose homeostasis and incretin regulation was assessed in enteroendocrine L- and K-cells. Anti-hyperglycaemic, insulinotropic and incretin secreting properties of Zn2+ were explored in normal, diabetic and incretin receptor knockout mice. Compared to intraperitoneal injection, oral administration of Zn2+ (50 µmol/kg body weight) with glucose (18 mmol/kg) in lean mice reduced the glycaemic excursion by 25-34% (p < 0.05-p < 0.001) and enhanced glucose-induced insulin release by 46-48% (p < 0.05-p < 0.01). In diabetic mice, orally administered Zn2+ lowered glucose by 24-31% (p < 0.01) and augmented insulin release by 32% (p < 0.01). In glucagon like peptide-1 (GLP-1) receptor knockout mice, Zn2+ reduced glucose by 15-28% (p < 0.05-p < 0.01) and increased insulin release by 35-43% (p < 0.01). In contrast Zn2+ had no effect on responses of glucose-dependent insulinotropic polypeptide (GIP) receptor knockout mice. Consistent with this, Zn2+ had no effect on circulating total GLP-1 whereas GIP release was stimulated by 26% (p < 0.05) in lean mice. Immunocytochemistry demonstrated GPR39 expression on mouse enteroendocrine L- and K-cells, GLUTag cells and pGIP/Neo STC-1 cells. Zn2+ had a direct effect on GIP secretion from pGIPneo STC-1 cells, increasing GIP secretion by 1.3-fold. GPR39 is expressed on intestinal L- and K-cells, and stimulated GIP secretion plays an integral role in mediating enhanced insulin secretion and glucose tolerance following oral administration of Zn2+. This suggests development of potent and selective GPR39 agonists as a therapeutic approach for diabetes.

3.
Article in English | MEDLINE | ID: mdl-38477483

ABSTRACT

CONTEXT: Proneurotensin (pNT) is associated with obesity and T2D, but the effects of Roux-en-Y gastric bypass (RYGB) on postprandial pNT levels are not well studied. OBJECTIVE: Assess effects of RYGB versus very low-energy diet (VLED) on pNT levels in response to mixed-meal tests (MMT), and long-term effects of RYGB on fasting pNT.Study participants: Cohort 1: Nine normoglycemic (NG) and ten T2D patients underwent MMT before and after VLED, immediately post-RYGB and six weeks post-RYGB. Cohort 2: Ten controls with normal weight and ten patients with obesity and T2D, who underwent RYGB or vertical sleeve gastrectomy (VSG), were subjected to MMTs and GIP infusions pre-surgery and three months post-surgery. GLP-1 infusions were performed in normal weight participants. Cohort 3: Fasting pNT was assessed pre-RYGB (n=161), two months post-RYGB (n=92) and 1-year post-RYGB (n=118) in NG and T2D patients. pNT levels were measured using ELISA. RESULTS: Reduced fasting and postprandial pNT were evident after VLED and immediately following RYGB. Reintroduction of solid food post-RYGB increased fasting and postprandial pNT. Prior to RYGB, all patients lacked a meal response in pNT, but this was evident post-RYGB/VSG. GIP- or GLP-1 infusion had no effect on pNT levels. Fasting pNT were higher 1-year post-RYGB regardless of glycemic status. CONCLUSION: RYGB causes a transient reduction in pNT as a consequence of caloric restriction. The RYGB/VSG-induced rise in postprandial pNT is independent of GIP and GLP-1 and higher fasting pNT are maintained one year post-surgically.

4.
Life Sci ; 318: 121475, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36754346

ABSTRACT

AIMS: To assess the role of GPR120 in glucose metabolism and incretin regulation from enteroendocrine L- and K-cells with determination of the cellular localisation of GPR120 in intestinal tissue and clonal Glucagon-Like Peptide-1 (GLP-1)/Gastric Inhibitory Polypeptide (GIP) cell lines. MAIN METHODS: Anti-hyperglycaemic, insulinotropic and incretin secreting properties of the GPR120 agonist, GW-9508 were explored in combination with oral and intraperitoneal glucose tolerance tests (GTT) in lean, diabetic and incretin receptor knockout mice. Cellular localisation of GPR120 was assessed by double immunofluorescence. KEY FINDINGS: Compared to intraperitoneal injection, oral administration of GW-9508 (0.1 µmol/kg body weight) together with glucose reduced the glycaemic excursion by 22-31 % (p < 0.05-p < 0.01) and enhanced glucose-induced insulin release by 30 % (p < 0.01) in normal mice. In high fat fed diabetic mice, orally administered GW-9508 lowered plasma glucose by 17-27 % (p < 0.05-p < 0.01) and augmented insulin release by 22-39 % (p < 0.05-p < 0.001). GW-9508 had no effect on the responses of GLP-1 receptor knockout mice and GIP receptor knockout mice. Consistent with this, oral GW-9508 increased circulating total GLP-1 release by 39-44 % (p < 0.01) and total GIP by 37-47 % (p < 0.01-p < 0.001) after 15 and 30 min in lean NIH Swiss mice. Immunocytochemistry demonstrated GPR120 expression on mouse enteroendocrine L- and K-cells, GLUTag cells and pGIP/Neo STC-1 cells. SIGNIFICANCE: GPR120 is expressed on intestinal L- and K-cells and stimulates GLP-1/GIP secretory pathways involved in mediating enhanced insulin secretion and improved glucose tolerance, following oral GW-9508. These novel data strongly support the development of potent and selective GPR120 agonists as an effective therapeutic approach for diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Insulins , Mice , Animals , Incretins/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1/metabolism , Glucose , Mice, Knockout , Insulins/therapeutic use , Blood Glucose/metabolism , Insulin/metabolism
5.
Biochem Pharmacol ; 208: 115398, 2023 02.
Article in English | MEDLINE | ID: mdl-36581052

ABSTRACT

GPR55 has been recognized as a novel anti-diabetic target exerting positive effects on beta cell function and mass. This study evaluated the metabolic actions and therapeutic efficacy of GPR55 agonist abnormal cannabidiol (Abn-CBD) administered alone and in combination with sitagliptin in diet-induced obese-diabetic mice. Chronic effects of 21-day oral administration of Abn-CBD (0.1 µmol/kg BW) monotherapy and in combination with sitagliptin (50 mg/kg BW) were assessed in obese-diabetic HFF mice (n = 8). Assessments of plasma glucose, circulating insulin, DPP-IV activity, CRP, amylase, lipids, body weight and food intake were undertaken. Glucose tolerance, insulin sensitivity, DEXA scanning and islet morphology analysis were performed at 21-days. Sitagliptin, Abn-CBD alone and in combination with sitagliptin attenuated plasma glucose by 37-53 % (p < 0.01 - p < 0.001) and enhanced circulating insulin concentrations by 23-31 % (p < 0.001). Abn-CBD alone and with sitagliptin reduced bodyweight by 9-10 % (p < 0.05). After 21-days, Abn-CBD in combination with sitagliptin (44 %; p < 0.01) improved glucose tolerance, whilst enhancing insulin sensitivity by 79 % (p < 0.01). Abn-CBD increased islet area (86 %; p < 0.05), beta cell mass (p < 0.05) and beta cell proliferation (164 %; p < 0.001), whilst in combination with sitagliptin islet area was decreased (50 %; p < 0.01). Abn-CBD alone, in combination with sitagliptin or sitagliptin alone decreased triglycerides by 34-65 % (p < 0.001) and total cholesterol concentrations by 15-25 % (p < 0.001). In addition, Abn-CBD in combination with sitagliptin reduced fat mass by 19 % (p < 0.05) and reduced CRP concentrations (39 %; p < 0.05). These findings advocate Abn-CBD monotherapy and in combination with sitagliptin as a novel and effective approach for bodyweight control and the treatment of glucose intolerance and dyslipidaemia in type-2-diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use , Receptors, Cannabinoid/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Insulin/metabolism , Obesity/drug therapy
6.
Cell Chem Biol ; 29(9): 1368-1380.e5, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35998625

ABSTRACT

Analogs of the incretin hormones Gip and Glp-1 are used to treat type 2 diabetes and obesity. Findings in experimental models suggest that manipulating several hormones simultaneously may be more effective. To identify small molecules that increase the number of incretin-expressing cells, we established a high-throughput in vivo chemical screen by using the gip promoter to drive the expression of luciferase in zebrafish. All hits increased the numbers of neurogenin 3-expressing enteroendocrine progenitors, Gip-expressing K-cells, and Glp-1-expressing L-cells. One of the hits, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor, additionally decreased glucose levels in both larval and juvenile fish. Knock-down experiments indicated that nfatc4, a downstream mediator of DYRKs, regulates incretin+ cell number in zebrafish, and that Dyrk1b regulates Glp-1 expression in an enteroendocrine cell line. DYRK inhibition also increased the number of incretin-expressing cells in diabetic mice, suggesting a conserved reinforcement of the enteroendocrine system, with possible implications for diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Drug Discovery , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/therapeutic use , Glucose/metabolism , Incretins/metabolism , Incretins/therapeutic use , Mice , Tyrosine , Zebrafish/metabolism
7.
Peptides ; 136: 170445, 2021 02.
Article in English | MEDLINE | ID: mdl-33197511

ABSTRACT

Roux-en-Y gastric bypass (RYGB) is the most effective treatment for morbid obesity and results in rapid remission of type 2 diabetes (T2D), before significant weight loss occurs. The underlying mechanisms for T2D remission are not fully understood. To gain insight into these mechanisms we used RYGB-operated diabetic GK-rats and Wistar control rats. Twelve adult male Wistar- and twelve adult male GK-rats were subjected to RYGB- or sham-operation. Oral glucose tolerance tests (OGTT) were performed six weeks after surgery. RYGB normalized fasting glucose levels in GK-rats, without affecting fasting insulin levels. In both rat strains, RYGB caused increased postprandial responses in glucose, GLP-1, and GIP. RYGB caused elevated postprandial insulin secretion in Wistar-rats, but had no effect on insulin secretion in GK-rats. In agreement with this, RYGB improved HOMA-IR in GK-rats, but had no effect on HOMA-ß. RYGB-operated GK-rats had an increased number of GIP receptor and GLP-1 receptor immunoreactive islet cells, but RYGB had no major effect on beta or alpha cell mass. Furthermore, in RYGB-operated GK-rats, increased Slc5a1, Pck2 and Pfkfb1 and reduced Fasn hepatic mRNA expression was observed. In summary, our data shows that RYGB induces T2D remission and enhanced postprandial incretin hormone secretion in GK-rats, without affecting insulin secretion or beta cell mass. Thus our data question the dogmatic view of how T2D remission is achieved and instead point at improved insulin sensitivity as the main mechanism of remission.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Gastric Inhibitory Polypeptide/genetics , Glucagon-Like Peptide 1/genetics , Obesity, Morbid/genetics , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/surgery , Disease Models, Animal , Gastric Bypass , Glucose Tolerance Test , Humans , Insulin/genetics , Insulin/metabolism , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Obesity, Morbid/metabolism , Obesity, Morbid/pathology , Obesity, Morbid/surgery , Rats , Rats, Wistar , Weight Loss/genetics , Weight Loss/physiology
SELECTION OF CITATIONS
SEARCH DETAIL