Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Soft Matter ; 20(3): 566-577, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38126708

ABSTRACT

Dynein motors exhibit catch bonding, where the unbinding rate of the motors from microtubule filaments decreases with increasing opposing load. The implications of this catch bond on the transport properties of dynein-driven cargo are yet to be fully understood. In this context, optical trapping assays constitute an important means of accurately measuring the forces generated by molecular motor proteins. We investigate, using theory and stochastic simulations, the transport properties of cargo transported by catch bonded dynein molecular motors - both singly and in teams - in a harmonic potential, which mimics the variable force experienced by cargo in an optical trap. We estimate the biologically relevant measures of first passage time - the time during which the cargo remains bound to the microtubule and detachment force - the force at which the cargo unbinds from the microtubule, using both two-dimensional and one-dimensional force balance frameworks. Our results suggest that even for cargo transported by a single motor, catch bonding may play a role depending on the force scale which marks the onset of the catch bond. By comparing with experimental measurements on single dynein-driven transport, we estimate realistic bounds of this catch bond force scale. Generically, catch bonding results in increased persistent motion, and can also generate non-monotonic behaviour of first passage times. For cargo transported by multiple motors, emergent collective effects due to catch bonding can result in non-trivial re-entrant phenomena wherein average first passage times and detachment forces exhibit non-monotonic behaviour as a function of the stall force and the motor velocity.

2.
Soft Matter ; 19(34): 6446-6457, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37606542

ABSTRACT

We report a two-layer microfluidic device to study the combined effect of confinement and chemical gradient on the motility of wild-type E. coli. We track individual E. coli in 50 µm and 10 µm wide microchannels, with a channel height of 2 µm, to generate quasi-2D conditions. We find that contrary to expectations, bacterial trajectories are superdiffusive even in the absence of a chemical (glucose) gradient. The superdiffusive behaviour becomes more pronounced upon introducing a chemical gradient or strengthening the lateral confinement. Run length distributions for weak lateral confinement in the absence of chemical gradients follow an exponential distribution. Both confinement and chemoattraction induce deviations from this behaviour, with the run length distributions approaching a power-law form under these conditions. Both confinement and chemoattraction suppress large-angle tumbles as well. Our results suggest that wild-type E. coli modulates both its runs and tumbles in a similar manner under physical confinement and chemical gradient. Our findings have implications for understanding how bacteria modulate their motility behaviour in natural habitats.


Subject(s)
Escherichia coli , Microfluidics , Escherichia coli/genetics , Chemotaxis , Diffusion , Glucose
3.
Biophys J ; 121(12): 2419-2435, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35591789

ABSTRACT

Syncytial cells contain multiple nuclei and have local distribution and function of cellular components despite being synthesized in a common cytoplasm. The syncytial Drosophila blastoderm embryo shows reduced spread of organelle and plasma membrane-associated proteins between adjacent nucleo-cytoplasmic domains. Anchoring to the cytoarchitecture within a nucleo-cytoplasmic domain is likely to decrease the spread of molecules; however, its role in restricting this spread has not been assessed. In order to analyze the cellular mechanisms that regulate the rate of spread of plasma membrane-associated molecules in the syncytial Drosophila embryos, we express a pleckstrin homology (PH) domain in a localized manner at the anterior of the embryo by tagging it with the bicoid mRNA localization signal. Anteriorly expressed PH domain forms an exponential gradient in the anteroposterior axis with a longer length scale compared with Bicoid. Using a combination of experiments and theoretical modeling, we find that the characteristic distribution and length scale emerge due to plasma membrane sequestration and restriction within an energid. Loss of plasma membrane remodeling to form pseudocleavage furrows shows an enhanced spread of PH domain but not Bicoid. Modeling analysis suggests that the enhanced spread of the PH domain occurs due to the increased spread of the cytoplasmic population of the PH domain in pseudocleavage furrow mutants. Our analysis of cytoarchitecture interaction in regulating plasma membrane protein distribution and constraining its spread has implications on the mechanisms of spread of various molecules, such as morphogens in syncytial cells.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cell Membrane/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Pleckstrin Homology Domains
4.
Soft Matter ; 19(1): 153-163, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36484149

ABSTRACT

Collapsed conformations of chromatin have been long suspected of being mediated by interactions with multivalent binding proteins, which can bring together distant sections of the chromatin fiber. In this study, we use Langevin dynamics simulation of a coarse grained chromatin polymer to show that the role of binding proteins can be more nuanced than previously suspected. In particular, for chromatin polymer in confinement, entropic forces can drive reswelling of collapsed chromatin with increasing binder concentrations, and this reswelling transition happens at physiologically relevant binder concentrations. Both the extent of collapse, and also of reswelling depends on the strength of confinement. We also study the kinetics of collapse and reswelling and show that both processes occur in similar timescales. We characterise this reswelling of chromatin in biologically relevant regimes and discuss the non-trivial role of multivalent binding proteins in mediating the spatial organisation of the genome.


Subject(s)
Carrier Proteins , Chromatin , Chromosomes/metabolism , Entropy , Polymers/metabolism
5.
Biophys J ; 120(18): 4129-4136, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34329628

ABSTRACT

Generation of mechanical oscillations is ubiquitous to a wide variety of intracellular processes, ranging from activity of muscle fibers to oscillations of the mitotic spindle. The activity of motors plays a vital role in maintaining the integrity of the mitotic spindle structure and generating spontaneous oscillations. Although the structural features and properties of the individual motors are well characterized, their implications on the functional behavior of motor-filament complexes are more involved. We show that force-induced allosteric deformations in dynein, which result in catchbonding behavior, provide a generic mechanism to generate spontaneous oscillations in motor-cytoskeletal filament complexes. The resultant phase diagram of such motor-filament systems-characterized by force-induced allosteric deformations-exhibits bistability and sustained limit-cycle oscillations in biologically relevant regimes, such as for catchbonded dynein. The results reported here elucidate the central role of this mechanism in fashioning a distinctive stability behavior and oscillations in motor-filament complexes such as mitotic spindles.


Subject(s)
Dyneins , Spindle Apparatus , Dyneins/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism
6.
Biophys J ; 119(11): 2316-2325, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33181117

ABSTRACT

An important question in the context of the three-dimensional organization of chromosomes is the mechanism of formation of large loops between distant basepairs. Recent experiments suggest that the formation of loops might be mediated by loop extrusion factor proteins such as cohesin. Experiments on cohesin have shown that cohesins walk diffusively on the DNA and that nucleosomes act as obstacles to the diffusion, lowering the permeability and hence reducing the effective diffusion constant. An estimation of the times required to form the loops of typical sizes seen in Hi-C experiments using these low-effective-diffusion constants leads to times that are unphysically large. The puzzle then is the following: how does a cohesin molecule diffusing on the DNA backbone achieve speeds necessary to form the large loops seen in experiments? We propose a simple answer to this puzzle and show that although at low densities, nucleosomes act as barriers to cohesin diffusion, beyond a certain concentration they can reduce loop formation times because of a subtle interplay between the nucleosome size and the mean linker length. This effect is further enhanced on considering stochastic binding kinetics of nucleosomes on the DNA backbone and leads to predictions of lower loop formation times than might be expected from a naive obstacle picture of nucleosomes.


Subject(s)
Chromatin , Nucleosomes , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone , Cohesins
7.
Biophys J ; 118(12): 3041-3050, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32492372

ABSTRACT

We propose a simple model for chromatin organization based on the interaction of the chromatin fibers with lamin proteins along the nuclear membrane. Lamin proteins are known to be a major factor that influences chromatin organization and hence gene expression in the cells. We provide a quantitative understanding of lamin-associated chromatin organization in a crowded macromolecular environment by systematically varying the heteropolymer segment distribution and the strength of the lamin-chromatin attractive interaction. Our minimal polymer model reproduces the formation of lamin-associated-domains and provides an in silico tool for quantifying domain length distributions for different distributions of heteropolymer segments. We show that a Gaussian distribution of heteropolymer segments, coupled with strong lamin-chromatin interactions, can qualitatively reproduce observed length distributions of lamin-associated-domains. Further, lamin-mediated interaction can enhance the formation of chromosome territories as well as the organization of chromatin into tightly packed heterochromatin and the loosely packed gene-rich euchromatin regions.


Subject(s)
Chromatin , Lamin Type A , Chromatin/genetics , Euchromatin , Heterochromatin , Lamin Type A/genetics , Nuclear Envelope
8.
Biochemistry ; 55(21): 2944-59, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27163633

ABSTRACT

Human APOBEC3B (A3B) is a member of the APOBEC3 (A3) family of cytidine deaminases, which function as DNA mutators and restrict viral pathogens and endogenous retrotransposons. Recently, A3B was identified as a major source of genetic heterogeneity in several human cancers. Here, we determined the solution nuclear magnetic resonance structure of the catalytically active C-terminal domain (CTD) of A3B and performed detailed analyses of its deaminase activity. The core of the structure comprises a central five-stranded ß-sheet with six surrounding helices, common to all A3 proteins. The structural fold is most similar to that of A3A and A3G-CTD, with the most prominent difference being found in loop 1. The catalytic activity of A3B-CTD is ∼15-fold lower than that of A3A, although both exhibit a similar pH dependence. Interestingly, A3B-CTD with an A3A loop 1 substitution had significantly increased deaminase activity, while a single-residue change (H29R) in A3A loop 1 reduced A3A activity to the level seen with A3B-CTD. This establishes that loop 1 plays an important role in A3-catalyzed deamination by precisely positioning the deamination-targeted C into the active site. Overall, our data provide important insights into the determinants of the activities of individual A3 proteins and facilitate understanding of their biological function.


Subject(s)
Cytidine Deaminase/metabolism , DNA/chemistry , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Catalytic Domain , Cytidine Deaminase/chemistry , DNA/metabolism , Humans , Protein Binding , Protein Structure, Tertiary , Substrate Specificity
9.
Nucleic Acids Res ; 42(4): 2525-37, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24293648

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC's NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC's aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity.


Subject(s)
DNA/chemistry , HIV-1/physiology , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/chemistry , Cell Line , DNA/metabolism , Mutation , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
10.
Nucleic Acids Res ; 42(11): 7145-59, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24813443

ABSTRACT

During human immunodeficiency virus type 1 (HIV-1) maturation, three different forms of nucleocapsid (NC) protein-NCp15 (p9 + p6), NCp9 (p7 + SP2) and NCp7-appear successively. A mutant virus expressing NCp15 shows greatly reduced infectivity. Mature NCp7 is a chaperone protein that facilitates remodeling of nucleic acids (NAs) during reverse transcription. To understand the strict requirement for NCp15 processing, we compared the chaperone function of the three forms of NC. NCp15 anneals tRNA to the primer-binding site at a similar rate as NCp7, whereas NCp9 is the most efficient annealing protein. Assays to measure NA destabilization show a similar trend. Dynamic light scattering studies reveal that NCp15 forms much smaller aggregates relative to those formed by NCp7 and NCp9. Nuclear magnetic resonance studies suggest that the acidic p6 domain of HIV-1 NCp15 folds back and interacts with the basic zinc fingers. Neutralizing the acidic residues in p6 improves the annealing and aggregation activity of NCp15 to the level of NCp9 and increases the protein-NA aggregate size. Slower NCp15 dissociation kinetics is observed by single-molecule DNA stretching, consistent with the formation of electrostatic inter-protein contacts, which likely contribute to the distinct aggregate morphology, irregular HIV-1 core formation and non-infectious virus.


Subject(s)
gag Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , DNA/metabolism , DNA, Single-Stranded/metabolism , DNA, Viral/metabolism , HIV-1/physiology , Humans , Molecular Sequence Data , Protein Precursors/metabolism , Protein Structure, Tertiary , RNA, Transfer/metabolism , RNA, Viral/metabolism , gag Gene Products, Human Immunodeficiency Virus/chemistry
11.
Nucleic Acids Res ; 42(2): 1095-110, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24163103

ABSTRACT

Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A's deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A's potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions.


Subject(s)
Cytidine Deaminase/chemistry , Proteins/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Deamination , Escherichia coli Proteins/metabolism , HIV Reverse Transcriptase/metabolism , Humans , Long Interspersed Nucleotide Elements , Molecular Sequence Data , Mutation , Protein Binding , Protein Conformation , Proteins/genetics , Proteins/metabolism , RNA/chemistry , RNA/metabolism , Sequence Alignment , Transcription, Genetic
12.
Retrovirology ; 12: 3, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25614027

ABSTRACT

BACKGROUND: Human APOBEC3H (A3H) belongs to the A3 family of host restriction factors, which are cytidine deaminases that catalyze conversion of deoxycytidine to deoxyuridine in single-stranded DNA. A3 proteins contain either one (A3A, A3C, A3H) or two (A3B, A3D, A3F, A3G) Zn-binding domains. A3H has seven haplotypes (I-VII) that exhibit diverse biological phenotypes and geographical distribution in the human population. Its single Zn-coordinating deaminase domain belongs to a phylogenetic cluster (Z3) that is different from the Z1- and Z2-type domains in other human A3 proteins. A3H HapII, unlike A3A or A3C, has potent activity against HIV-1. Here, we sought to identify the determinants of A3H HapII deaminase and antiviral activities, using site-directed sequence- and structure-guided mutagenesis together with cell-based, biochemical, and HIV-1 infectivity assays. RESULTS: We have constructed a homology model of A3H HapII, which is similar to the known structures of other A3 proteins. The model revealed a large cluster of basic residues (not present in A3A or A3C) that are likely to be involved in nucleic acid binding. Indeed, RNase A pretreatment of 293T cell lysates expressing A3H was shown to be required for detection of deaminase activity, indicating that interaction with cellular RNAs inhibits A3H catalytic function. Similar observations have been made with A3G. Analysis of A3H deaminase substrate specificity demonstrated that a 5' T adjacent to the catalytic C is preferred. Changing the putative nucleic acid binding residues identified by the model resulted in reduction or abrogation of enzymatic activity, while substituting Z3-specific residues in A3H to the corresponding residues in other A3 proteins did not affect enzyme function. As shown for A3G and A3F, some A3H mutants were defective in catalysis, but retained antiviral activity against HIV-1vif (-) virions. Furthermore, endogenous reverse transcription assays demonstrated that the E56A catalytic mutant inhibits HIV-1 DNA synthesis, although not as efficiently as wild type. CONCLUSIONS: The molecular and biological activities of A3H are more similar to those of the double-domain A3 proteins than to those of A3A or A3C. Importantly, A3H appears to use both deaminase-dependent and -independent mechanisms to target reverse transcription and restrict HIV-1 replication.


Subject(s)
Aminohydrolases/genetics , Aminohydrolases/metabolism , HIV-1/immunology , HIV-1/physiology , Virus Replication , Amino Acid Sequence , DNA Mutational Analysis , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation
13.
Biochemistry ; 52(46): 8226-36, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24144434

ABSTRACT

The human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein is a chaperone that facilitates nucleic acid conformational changes to produce the most thermodynamically stable arrangement. The critical role of NC in many steps of the viral life cycle makes it an attractive therapeutic target. The chaperone activity of NC depends on its nucleic acid aggregating ability, duplex destabilizing activity, and rapid on-off binding kinetics. During the minus-strand transfer step of reverse transcription, NC chaperones the annealing of highly structured transactivation response region (TAR) RNA to the complementary TAR DNA. In this work, the role of different functional domains of NC in facilitating 59-nucleotide TAR RNA-DNA annealing was probed by using chemically synthesized peptides derived from full-length (55 amino acids) HIV-1 NC: NC(1-14), NC(15-35), NC(1-28), NC(1-35), NC(29-55), NC(36-55), and NC(11-55). Most of these peptides displayed significantly reduced annealing kinetics, even when present at concentrations much higher than that of wild-type (WT) NC. In addition, these truncated NC constructs generally bind more weakly to single-stranded DNA and are less effective nucleic acid aggregating agents than full-length NC, consistent with the loss of both electrostatic and hydrophobic contacts. However, NC(1-35) displayed annealing kinetics, nucleic acid binding, and aggregation activity that were very similar to those of WT NC. Thus, we conclude that the N-terminal zinc finger, flanked by the N-terminus and linker domains, represents the minimal sequence that is necessary and sufficient for chaperone function in vitro. In addition, covalent continuity of the 35 N-terminal amino acids of NC is critical for full activity. Thus, although the hydrophobic pocket formed by residues proximal to the C-terminal zinc finger has been a major focus of recent anti-NC therapeutic strategies, NC(1-35) represents an alternative target for therapeutics aimed at disrupting NC's chaperone function.


Subject(s)
HIV-1/genetics , Molecular Chaperones/metabolism , Nucleocapsid Proteins/physiology , Zinc Fingers/physiology , DNA, Viral/chemistry , DNA, Viral/metabolism , HIV Long Terminal Repeat/physiology , Molecular Chaperones/chemistry , Nucleocapsid Proteins/chemistry , Protein Structure, Tertiary , RNA, Viral/chemistry , RNA, Viral/metabolism , Zinc Fingers/genetics
14.
FEBS J ; 290(14): 3533-3538, 2023 07.
Article in English | MEDLINE | ID: mdl-37184984

ABSTRACT

Quiescence, reversible cell cycle arrest, is essential for survival during nutrient limitations and the execution of precise developmental patterns. In yeast, entry into quiescence is associated with a loss of histone acetylation as the chromatin becomes tightly condensed. In this issue, Small and Osley performed an unbiased screen of mutations in histone H3 and H4 amino acids in budding yeast and identified histone residues that are critical for quiescence and chronological lifespan. The results indicate that multiple histone amino acids, likely affecting nucleosome structure and a wide range of chromatin-associated processes, can promote or inhibit quiescence entry. Many of the same histone amino acids are also critical regulators of chronological lifespan.


Subject(s)
Histones , Saccharomyces cerevisiae Proteins , Histones/metabolism , Screen Time , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Saccharomyces cerevisiae/metabolism , Mutation , Amino Acids/metabolism , Acetylation
15.
Commun Biol ; 6(1): 1138, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37973839

ABSTRACT

Oncogenic pathways that drive cancer progression reflect both genetic changes and epigenetic regulation. Here we stratified primary tumors from each of 24 TCGA adult cancer types based on the gene expression patterns of epigenetic factors (epifactors). The tumors for five cancer types (ACC, KIRC, LGG, LIHC, and LUAD) separated into two robust clusters that were better than grade or epithelial-to-mesenchymal transition in predicting clinical outcomes. The majority of epifactors that drove the clustering were also individually prognostic. A pan-cancer machine learning model deploying epifactor expression data for these five cancer types successfully separated the patients into poor and better outcome groups. Single-cell analysis of adult and pediatric tumors revealed that expression patterns associated with poor or worse outcomes were present in individual cells within tumors. Our study provides an epigenetic map of cancer types and lays a foundation for discovering pan-cancer targetable epifactors.


Subject(s)
Epigenesis, Genetic , Neoplasms , Adult , Child , Humans , Neoplasms/genetics , Cluster Analysis , Epithelial-Mesenchymal Transition , Machine Learning
16.
Integr Biol (Camb) ; 152023 Apr 11.
Article in English | MEDLINE | ID: mdl-37449740

ABSTRACT

In an attempt to understand the role of dysregulated circadian rhythm in glioma, our recent findings highlighted the existence of a feed-forward loop between tumour metabolite lactate, pro-inflammatory cytokine IL-1ß and circadian CLOCK. To further elucidate the implication of this complex interplay, we developed a mathematical model that quantitatively describes this lactate dehydrogenase A (LDHA)-IL-1ß-CLOCK/BMAL1 circuit and predicts potential therapeutic targets. The model was calibrated on quantitative western blotting data in two glioma cell lines in response to either lactate inhibition or IL-1ß stimulation. The calibrated model described the experimental data well and most of the parameters were identifiable, thus the model was predictive. Sensitivity analysis identified IL-1ß and LDHA as potential intervention points. Mathematical models described here can be useful to understand the complex interrelationship between metabolism, inflammation and circadian rhythm, and in designing effective therapeutic strategies. Our findings underscore the importance of including the circadian clock when developing pharmacological approaches that target aberrant tumour metabolism and inflammation. Insight box  The complex interplay of metabolism-inflammation-circadian rhythm in tumours is not well understood. Our recent findings provided evidence of a feed-forward loop between tumour metabolite lactate, pro-inflammatory cytokine IL-1ß and circadian CLOCK/BMAL1 in glioma. To elucidate the implication of this complex interplay, we developed a mathematical model that quantitatively describes this LDHA-IL-1ß-CLOCK/BMAL1 circuit and integrates experimental data to predict potential therapeutic targets. The study employed a multi-start optimization strategy and profile likelihood estimations for parameter estimation and assessing identifiability. The simulations are in reasonable agreement with the experimental data. Sensitivity analysis found LDHA and IL-1ß as potential therapeutic points. Mathematical models described here can provide insights to understand the complex interrelationship between metabolism, inflammation and circadian rhythm, and in identifying effective therapeutic targets.


Subject(s)
ARNTL Transcription Factors , Glioma , Humans , ARNTL Transcription Factors/metabolism , Lactic Acid , Inflammation/metabolism , Cytokines
17.
Nat Commun ; 14(1): 4108, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433821

ABSTRACT

Simulating chromatin is crucial for predicting genome organization and dynamics. Although coarse-grained bead-spring polymer models are commonly used to describe chromatin, the relevant bead dimensions, elastic properties, and the nature of inter-bead potentials are unknown. Using nucleosome-resolution contact probability (Micro-C) data, we systematically coarse-grain chromatin and predict quantities essential for polymer representation of chromatin. We compute size distributions of chromatin beads for different coarse-graining scales, quantify fluctuations and distributions of bond lengths between neighboring regions, and derive effective spring constant values. Unlike the prevalent notion, our findings argue that coarse-grained chromatin beads must be considered as soft particles that can overlap, and we derive an effective inter-bead soft potential and quantify an overlap parameter. We also compute angle distributions giving insights into intrinsic folding and local bendability of chromatin. While the nucleosome-linker DNA bond angle naturally emerges from our work, we show two populations of local structural states. The bead sizes, bond lengths, and bond angles show different mean behavior at Topologically Associating Domain (TAD) boundaries and TAD interiors. We integrate our findings into a coarse-grained polymer model and provide quantitative estimates of all model parameters, which can serve as a foundational basis for all future coarse-grained chromatin simulations.


Subject(s)
Chromatin , Animals , Mice , Mouse Embryonic Stem Cells , Chromatin/chemistry , Nucleosomes/chemistry , alpha-Globins/chemistry , Models, Molecular , Protein Structure, Tertiary , Genome
18.
Eur Phys J E Soft Matter ; 35(4): 9706, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22526980

ABSTRACT

We study pressurised self-avoiding ring polymers in two dimensions using Monte Carlo simulations, scaling arguments and Flory-type theories, through models which generalise the model of Leibler, Singh and Fisher (Phys. Rev. Lett. 59, 1989 (1987)). We demonstrate the existence of a thermodynamic phase transition at a non-zero scaled pressure [Formula: see text] , where [Formula: see text] = Np/4[Formula: see text] , with the number of monomers N [Formula: see text] ∞ and the pressure p [Formula: see text] 0 , keeping [Formula: see text] constant, in a class of such models. This transition is driven by bond energetics and can be either continuous or discontinuous. It can be interpreted as a shape transition in which the ring polymer takes the shape, above the critical pressure, of a regular N -gon whose sides scale smoothly with pressure, while staying unfaceted below this critical pressure. Away from these limits, we argue that the transition is replaced by a sharp crossover. The area, however, scales with N(2) for all positive p in all such models, consistent with earlier scaling theories.


Subject(s)
Models, Chemical , Phase Transition , Polymers/chemistry , Computer Simulation , Monte Carlo Method , Pressure , Thermodynamics
19.
J Chem Phys ; 136(13): 134901, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22482584

ABSTRACT

We present a theory for polyelectrolyte gels that allow the effective charge of the polymer backbone to self-regulate. Using a variational approach, we obtain an expression for the free energy of gels that accounts for the gel elasticity, free energy of mixing, counterion adsorption, local dielectric constant, electrostatic interaction among polymer segments, electrolyte ion correlations, and self-consistent charge regularization on the polymer strands. This free energy is then minimized to predict the behavior of the system as characterized by the gel volume fraction as a function of external variables such as temperature and salt concentration. We present results for the volume transition of polyelectrolyte gels in salt-free solvents, solvents with monovalent salts, and solvents with divalent salts. The results of our theoretical analysis capture the essential features of existing experimental results and also provide predictions for further experimentation. Our analysis highlights the importance of the self-regularization of the effective charge for the volume transition of gels in particular, and for charged polymer systems in general. Our analysis also enables us to identify the dominant free energy contributions for charged polymer networks and provides a framework for further investigation of specific experimental systems.


Subject(s)
Electrolytes/chemistry , Electrons , Polymers/chemistry , Gels , Solvents/chemistry , Temperature , Thermodynamics
20.
J Biol Chem ; 285(1): 295-307, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19887455

ABSTRACT

Retroviral nucleocapsid (NC) proteins are molecular chaperones that facilitate nucleic acid (NA) remodeling events critical in viral replication processes such as reverse transcription. Surprisingly, the NC protein from human T-cell leukemia virus type 1 (HTLV-1) is an extremely poor NA chaperone. Using bulk and single molecule methods, we find that removal of the anionic C-terminal domain (CTD) of HTLV-1 NC results in a protein with chaperone properties comparable with that of other retroviral NCs. Increasing the ionic strength of the solution also improves the chaperone activity of full-length HTLV-1 NC. To determine how the CTD negatively modulates the chaperone activity of HTLV-1 NC, we quantified the thermodynamics and kinetics of wild-type and mutant HTLV-1 NC/NA interactions. The wild-type protein exhibits very slow dissociation kinetics, and removal of the CTD or mutations that eliminate acidic residues dramatically increase the protein/DNA interaction kinetics. Taken together, these results suggest that the anionic CTD interacts with the cationic N-terminal domain intramolecularly when HTLV-1 NC is not bound to nucleic acids, and similar interactions occur between neighboring molecules when NC is NA-bound. The intramolecular N-terminal domain-CTD attraction slows down the association of the HTLV-1 NC with NA, whereas the intermolecular interaction leads to multimerization of HTLV-1 NC on the NA. The latter inhibits both NA/NC aggregation and rapid protein dissociation from single-stranded DNA. These features make HTLV-1 NC a poor NA chaperone, despite its robust duplex destabilizing capability.


Subject(s)
Human T-lymphotropic virus 1/chemistry , Molecular Chaperones/metabolism , Nucleic Acids/metabolism , Static Electricity , Amino Acid Sequence , Base Sequence , DNA, Viral/chemistry , DNA, Viral/genetics , Kinetics , Molecular Sequence Data , Mutant Proteins/chemistry , Mutation/genetics , Nucleic Acid Conformation/drug effects , Nucleic Acid Denaturation/drug effects , Nucleic Acid Heteroduplexes/chemistry , Nucleocapsid Proteins/chemistry , Osmolar Concentration , Protein Structure, Tertiary , RNA, Viral/chemistry , Sodium Chloride/pharmacology , Solutions , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL