Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Ther ; 30(5): 2048-2057, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35231604

ABSTRACT

Effective T cell induction is an important strategy in HIV-vaccine development. However, it has been indicated that vaccine-induced HIV-specific CD4+ T cells, the preferential targets of HIV infection, might increase viral acquisition after HIV exposure. We have recently developed an immunogen (CaV11), tandemly connected overlapping 11-mer peptides spanning the simian immunodeficiency virus (SIV) Gag capsid and Vif proteins, to selectively induce Gag- and Vif-specific CD8+ T cells but not CD4+ T cells. Here, we show protective efficacy of a CaV11-expressing vaccine against repeated intrarectal low-dose SIVmac239 challenge in rhesus macaques. Eight of the twelve vaccinated macaques were protected after eight challenges. Kaplan-Meier analysis indicated significant protection in the vaccinees compared to the unvaccinated macaques. Vaccine-induced Gag-specific CD8+ T cell responses were significantly higher in the protected than the unprotected vaccinees. These results suggest that classical CD8+ T cell induction by viral Env-independent vaccination can confer protection from intrarectal SIV acquisition, highlighting the rationale for this immunogen design to induce virus-specific CD8+ T cells but not CD4+ T cells in HIV-vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , SAIDS Vaccines , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes , HIV Infections/prevention & control , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/prevention & control
2.
J Gen Virol ; 103(10)2022 10.
Article in English | MEDLINE | ID: mdl-36205476

ABSTRACT

Macaque-tropic HIV-1 (HIV-1mt) variants have been developed to establish preferable primate models that are advantageous in understanding HIV-1 infection pathogenesis and in assessing the preclinical efficacy of novel prevention/treatment strategies. We previously reported that a CXCR4-tropic HIV-1mt, MN4Rh-3, efficiently replicates in peripheral blood mononuclear cells (PBMCs) of cynomolgus macaques homozygous for TRIMCyp (CMsTC). However, the CMsTC challenged with MN4Rh-3 displayed low viral loads during the acute infection phase and subsequently exhibited short-term viremia. These virological phenotypes in vivo differed from those observed in most HIV-1-infected people. Therefore, further development of the HIV-1mt variant was needed. In this study, we first reconstructed the MN4Rh-3 clone to produce a CCR5-tropic HIV-1mt, AS38. In addition, serial in vivo passages allowed us to produce a highly adapted AS38-derived virus that exhibits high viral loads (up to approximately 106 copies ml-1) during the acute infection phase and prolonged periods of persistent viremia (lasting approximately 16 weeks postinfection) upon infection of CMsTC. Whole-genome sequencing of the viral genomes demonstrated that the emergence of a unique 15-nt deletion within the vif gene was associated with in vivo adaptation. The deletion resulted in a significant increase in Vpr protein expression but did not affect Vif-mediated antagonism of antiretroviral APOBEC3s, suggesting that Vpr is important for HIV-1mt adaptation to CMsTC. In summary, we developed a novel CCR5-tropic HIV-1mt that can induce high peak viral loads and long-term viremia and exhibits increased Vpr expression in CMsTC.


Subject(s)
Gene Products, vpr , HIV Infections , HIV Seropositivity , HIV-1 , Simian Immunodeficiency Virus , Animals , HIV-1/genetics , Leukocytes, Mononuclear , Macaca fascicularis , Simian Immunodeficiency Virus/genetics , Viremia , Virus Replication
3.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: mdl-33087465

ABSTRACT

Toward development of a dual vaccine for human immunodeficiency virus type 1 (HIV-1) and tuberculosis infections, we developed a urease-deficient bacillus Calmette-Guérin (BCG) strain Tokyo172 (BCGΔurease) to enhance its immunogenicity. BCGΔurease expressing a simian immunodeficiency virus (SIV) Gag induced BCG antigen-specific CD4+ and CD8+ T cells more efficiently and more Gag-specific CD8+ T cells. We evaluated its protective efficacy against SIV infection in cynomolgus monkeys of Asian origin, shown to be as susceptible to infection with SIVmac251 as Indian rhesus macaques. Priming with recombinant BCG (rBCG) expressing SIV genes was followed by a boost with SIV gene-expressing LC16m8Δ vaccinia virus and a second boost with SIV Env-expressing Sendai virus. Eight weeks after the second boost, monkeys were repeatedly challenged with a low dose of SIVmac251 intrarectally. Two animals out of 6 vaccinees were protected, whereas all 7 control animals were infected without any early viral controls. In one vaccinated animal, which had the most potent CD8+ T cells in an in vitro suppression activity (ISA) assay of SIVmac239 replication, plasma viremia was undetectable throughout the follow-up period. Protection was confirmed by the lack of anamnestic antibody responses and detectable cell-associated provirus in various organs. Another monkey with a high ISA acquired a small amount of SIV, but it later became suppressed below the detection limit. Moreover, the ISA score correlated with SIV acquisition. On the other hand, any parameter relating anti-Env antibody was not correlated with the protection.IMPORTANCE Because both AIDS and tuberculosis are serious health threats in middle/low-income countries, development of a dual vaccine against them would be highly beneficial. To approach the goal, here we first assessed a urease-deficient bacillus Calmette-Guérin (BCG) for improvement of immunogenicity against both Mycobacterium tuberculosis and SIV. Second, we demonstrated the usefulness of Asian-origin cynomolgus monkeys for development of a preclinical AIDS vaccine by direct comparison with Indian rhesus macaques as the only validated hosts that identically mirror the outcomes of clinical trials, since the availability of Indian rhesus macaques is limited in countries other than the United States. Finally, we report the protective effect of a vaccination regimen comprising BCG, the highly attenuated vaccinia virus LC16m8Δ strain, and nontransmissible Sendai virus as safe vectors expressing SIV genes using repeated mucosal challenge with highly pathogenic SIVmac251. Identification of CD8+ T cells as a protective immunity suggests a future direction of AIDS vaccine development.


Subject(s)
AIDS Vaccines/immunology , Acquired Immunodeficiency Syndrome/prevention & control , BCG Vaccine/immunology , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , Tuberculosis/prevention & control , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line , Cricetinae , Disease Models, Animal , HIV-1/immunology , Humans , Macaca mulatta , Mice , Mice, Inbred C57BL , Rabbits , SAIDS Vaccines/immunology , Sendai virus/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Vaccination , Vaccinia virus/immunology
4.
J Virol ; 95(7)2021 03 10.
Article in English | MEDLINE | ID: mdl-33441342

ABSTRACT

Virus infection induces B cells with a wide variety of B cell receptor (BCR) repertoires. Patterns of induced BCR repertoires are different in individuals, while the underlying mechanism causing this difference remains largely unclear. In particular, the impact of germ line BCR immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent antibody induction associated with a germ line BCR Ig gene polymorphism. B404-class antibodies, which were previously reported as potent anti-simian immunodeficiency virus (SIV) neutralizing antibodies using the germ line VH3.33 gene-derived Ig heavy chain, were induced in five of 10 rhesus macaques after SIVsmH635FC infection. Investigation of VH3.33 genes in B404-class antibody inducers (n = 5) and non-inducers (n = 5) revealed association of B404-class antibody induction with a germ line VH3.33 polymorphism. Analysis of reconstructed antibodies indicated that the VH3.33 residue 38 is the determinant for B404-class antibody induction. B404-class antibodies were induced in all the macaques possessing the B404-associated VH3.33 allele, even under undetectable viremia. Our results show that a single nucleotide polymorphism in germ line VH genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line VH-gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.IMPORTANCE Vaccines against a wide variety of infectious diseases have been developed mostly to induce antibodies targeting pathogens. However, small but significant percentage of people fail to mount potent antibody responses after vaccination, while the underlying mechanism of host failure in antibody induction remains largely unclear. In particular, the impact of germ line B cell receptor (BCR)/antibody immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent anti-simian immunodeficiency virus neutralizing antibody induction associated with a germ line BCR/antibody Ig gene polymorphism in rhesus macaques. Our results demonstrate that a single nucleotide polymorphism in germ line Ig genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line BCR/antibody Ig gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.

5.
J Theor Biol ; 509: 110493, 2021 01 21.
Article in English | MEDLINE | ID: mdl-32956668

ABSTRACT

Chimeric simian and human immunodeficiency viruses (SHIVs) are appropriate animal models for the human immunodeficiency virus (HIV) because HIV has quite a narrow host range. Additionally, SHIVs that encode the HIV-1 Env protein and are infectious to macaques have many strains that show different pathogenesis, such as the highly pathogenic SHIV-KS661 and the less pathogenic SHIV-#64. Therefore, we used SHIVs to understand different aspects of AIDS pathogenesis. In a previous study, we established a mathematical model of in vivo early SHIV infection dynamics, which revealed the expected uninfected and infected dynamics in Rhesus macaques. In concrete, the number of uninfected CD4+ T cells in SHIV-KS661-infected Rhesus macaques decreased more significantly and rapidly than that of SHIV-#64 Rhesus macaques, and these Rhesus macaques did not any induce host immune response. In contrast, the number of uninfected CD4+ T cells in SHIV-#64-infected Rhesus macaques is maintained, and host immune response developed. Although we considered that the peak viral load might determine whether systemic CD4+ T cell depletion occurs or host immune responses develop, we could not investigate this because our model quantified only SHIV infection prior to the development of the pathogenicity or host immune responses. Therefore, we developed a new mathematical model to investigate why SHIV-#64 and SHIV-KS661 showed different long-term viral dynamics. We fitted our new model considering antibody responses to our experimental datasets that included antibody titers, CD4+ T cells, and viral load data. We performed a maximum likelihood estimation using a non-linear mixed effect model. From the results, we derived the basic reproduction numbers of SHIV-#64 and SHIV-KS661 from intravenous infection (IV) and SHIV-KS661 from intrarectal infection (IR), as well as the antiviral effects of antibodies against SHIV-#64(IV) and SHIV-KS661(IR). We found significant differences between the basic reproduction number of SHIV-#64(IV) or -KS661(IR) and that of SHIV-KS661(IV). We found no clear difference between the antiviral effects of SHIV-#64(IV) and SHIV-KS661(IR), and revealed that an antiviral effect more than 90% of that of maximum antibody responses was induced from initial antibody responses (i.e., antibody response just after its inducement). In conclusion, we found that the basic reproduction number, rather than SHIV strains determines whether systemic CD4+ T cell depletion develops, and the subsequent antibody responses occurs.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Antiviral Agents , Humans , Immunity , Macaca mulatta , Viral Load
6.
J Gen Virol ; 100(2): 266-277, 2019 02.
Article in English | MEDLINE | ID: mdl-30608228

ABSTRACT

Recently, a large number of Japanese macaques (Macaca fuscata) died of an unknown hemorrhagic syndrome at Kyoto University Primate Research Institute (KUPRI) and an external breeding facility for National Institute for Physiological Sciences (NIPS). We previously reported that the hemorrhagic syndrome of Japanese macaques at KUPRI was caused by infection with simian retrovirus 4 (SRV-4); however, the cause of similar diseases that occurred at the external breeding facility for NIPS was still unknown. In this study, we isolated SRV-5 from Japanese macaques exhibiting thrombocytopenia and then constructed an infectious molecular clone of the SRV-5 isolate. When the SRV-5 isolate was inoculated into two Japanese macaques, severe thrombocytopenia was induced in one of two macaques within 22 days after inoculation. Similarly, the clone-derived virus was inoculated into the other two Japanese macaques, and one of two macaques developed severe thrombocytopenia within 22 days. On the other hand, the remaining two of four macaques survived as asymptomatic carriers even after administering an immunosuppressive agent, dexamethasone. As determined by real-time PCR, SRV-5 infected a variety of tissues in Japanese macaques, especially in digestive and lymph organs. We also identified the SRV-5 receptor as ASCT2, a neutral amino acid transporter in Japanese macaques. Taken together, we conclude that the causative agent of hemorrhagic syndrome occurred at the external breeding facility for NIPS was SRV-5.


Subject(s)
Hemorrhagic Disorders/veterinary , Monkey Diseases/pathology , Monkey Diseases/virology , Retroviridae Infections/veterinary , Retroviruses, Simian/growth & development , Retroviruses, Simian/pathogenicity , Thrombocytopenia/veterinary , Animals , Hemorrhagic Disorders/pathology , Hemorrhagic Disorders/virology , Macaca , Retroviridae Infections/pathology , Retroviridae Infections/virology , Retroviruses, Simian/isolation & purification , Thrombocytopenia/pathology , Thrombocytopenia/virology
7.
PLoS Pathog ; 13(9): e1006638, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28931083

ABSTRACT

CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced.


Subject(s)
Histocompatibility Antigens Class I/genetics , Immune Evasion/immunology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/pathogenicity , Animals , CD8-Positive T-Lymphocytes/immunology , Immune Evasion/genetics , Macaca mulatta , Virulence
8.
J Theor Biol ; 479: 29-36, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31299334

ABSTRACT

Since chimeric simian and human immunodeficiency viruses (SHIVs) used here, that is, SHIV-#64 and -KS661 utilize both CCR5 and CXCR4 chemokine receptors, they have broad target cell properties. A highly pathogenic SHIV strain, SHIV-KS661, causes an infection that systemically depletes the CD4+ T cells of Rhesus macaques, while a less pathogenic strain, SHIV-#64, does not cause severe symptoms in the macaques. In our previous studies, we established in vitro quantification system for virus infection dynamics, and concluded that SHIV-KS661 effectively produces infectious virions compared with SHIV-#64 in the HSC-F cell culture. However, in vivo dynamics of SHIV infection have not been well understood. To quantify SHIV-#64 and -KS661 infection dynamics in Rhesus macaques, we developed a novel approach and analyzed total CD4+ T cells and viral load in peripheral blood, and reproduced the expected dynamics for the uninfected and infected CD4+ T cells in silico. Using our previous cell culture experimental datasets, we revealed that an infection rate constant is different between SHIV-#64 and -KS661, but the viral production rate and the death rate are similar for the both strains. Thus, here, we assumed these relations in our in vivo data and carried out the data fitting. We performed Bayesian estimation for the whole dataset using MCMC sampling, and simultaneously fitted our novel model to total CD4+ T cells and viral load of SHIV-#64 and -KS661 infection. Our analyses explained that the Malthusian parameter (i.e., fitness of virus infection) and the basic reproduction number (i.e., potential of virus infection) for SHIV-KS661 are significantly higher than those of SHIV-#64. In addition, we demonstrated that the number of uninfected CD4+ T cells in SHIV-KS661 infected Rhesus macaques decreases to the significantly lower value than that before the inoculation several days earlier compared with SHIV-#64 infection. Taken together, the differences between SHIV-#64 and -KS661 infection before the peak viral load might determine the subsequent destiny, that is, whether the systemic CD4+ T cell depletion occurs or the host immune response develop.


Subject(s)
HIV Infections/virology , HIV/pathogenicity , Macaca mulatta/virology , Simian Immunodeficiency Virus/pathogenicity , Animals , Bayes Theorem , CD4 Lymphocyte Count , Humans , Macaca mulatta/blood , T-Lymphocytes/virology , Viral Load , Virion , Virus Replication
9.
Arch Virol ; 164(5): 1297-1308, 2019 May.
Article in English | MEDLINE | ID: mdl-30820667

ABSTRACT

We previously developed CCR5-tropic neutralization-resistant simian/human immunodeficiency virus (SHIV) strains and a rhesus macaque model of infection with these SHIVs. We induced the production of neutralizing antibodies (nAbs) against HIV-1 by infecting rhesus macaques with different neutralization-resistant SHIV strains. First, SHIV-MK1 (MK1) (neutralization susceptible, tier 1B) with CCR5 tropism was generated from SHIV-KS661 using CXCR4 as the main co-receptor. nAbs against parental-lineage and heterologous tier 2 viruses were induced by tier 1B virus (MK1) infection of the rhesus macaque MM482. We analyzed viral resistance to neutralization over time in MM482 and observed that the infecting virus mutated from tier 1B to tier 2 at 36 weeks postinfection (wpi). In addition, an analysis of mutations showed that N169D, K187E, S190N, S239, T459N (T459D at 91 wpi), and V842A mutations were present after 36 wpi. This led to the appearance of neutralization-resistant viral clones. In addition, MK1 was passaged in three rhesus macaques to generate neutralization-resistant SHIV-MK38 (MK38) (tier 2). We evaluated nAb production by rhesus macaques infected with SHIV-MK38 #818 (#818) (tier 2), a molecular clone of MK38. Neutralization of the parental lineage was induced earlier than in macaques infected with tier 1B virus, and neutralization activity against heterologous tier 2 virus was beginning to develop. Therefore, CCR5-tropic neutralization-resistant SHIV-infected rhesus macaques may be useful models of anti-HIV-1 nAb production and will facilitate the development of a vaccine that elicits nAbs against HIV-1.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , HIV-1/immunology , Simian Immunodeficiency Virus/immunology , Animals , Cell Line , HEK293 Cells , Humans , Macaca mulatta , Monkey Diseases/immunology , Monkey Diseases/virology , Neutralization Tests/methods , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism
10.
Theor Biol Med Model ; 14(1): 9, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28431573

ABSTRACT

BACKGROUND: The host range of human immunodeficiency virus (HIV) is quite narrow. Therefore, analyzing HIV-1 pathogenesis in vivo has been limited owing to lack of appropriate animal model systems. To overcome this, chimeric simian and human immunodeficiency viruses (SHIVs) that encode HIV-1 Env and are infectious to macaques have been developed and used to investigate the pathogenicity of HIV-1 in vivo. So far, we have many SHIV strains that show different pathogenesis in macaque experiments. However, dynamic aspects of SHIV infection have not been well understood. To fully understand the dynamic properties of SHIVs, we focused on two representative strains-the highly pathogenic SHIV, SHIV-KS661, and the less pathogenic SHIV, SHIV-#64-and measured the time-course of experimental data in cell culture. METHODS: We infected HSC-F with SHIV-KS661 and -#64 and measured the concentration of Nef-negative (target) and Nef-positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for 9 days. The experiments were repeated at two different multiplicities of infection, and a previously developed mathematical model incorporating the infectious and non-infectious viruses was fitted to the full dataset of each strain simultaneously to characterize the infection dynamics of these two strains. RESULTS AND CONCLUSIONS: We quantified virological indices including virus burst sizes and basic reproduction number of both SHIV-KS661 and -#64. Comparing the burst size of total and infectious viruses (viral RNA copies and TCID50, respectively), we found that there was a statistically significant difference between the infectious virus burst size of SHIV-KS661 and -#64, while there was no significant difference between the total virus burst size. Furthermore, our analyses showed that the fraction of infectious virus among the produced SHIV-KS661 viruses, which is defined as the infectious viral load (TCID50/ml) divided by the total viral load (RNA copies/ml), is more than 10-fold higher than that of SHIV-#64 during overall infection (i.e., for 9 days). Taken together, we conclude that the highly pathogenic SHIV produces infectious virions more effectively than the less pathogenic SHIV in cell culture.


Subject(s)
HIV-1/physiology , Models, Theoretical , Simian Immunodeficiency Virus/physiology , Viral Load/physiology , Virion/physiology , Animals , Cell Line , Humans
11.
J Gen Virol ; 97(5): 1249-1260, 2016 05.
Article in English | MEDLINE | ID: mdl-26850058

ABSTRACT

Previously, we reported that a new genetically diverse CCR5 (R5) tropic simian/human immunodeficiency virus (SHIV-MK38) adapted to rhesus monkeys became more neutralization resistant to SHIV-infected plasma than did the parental SHIV-KS661 clone. Here, to clarify the significance of the neutralization-resistant phenotype of SHIV in a macaque model, we initially investigated the precise neutralization phenotype of the SHIVs, including SHIV-MK38 molecular clones, using SHIV-MK38-infected plasma, a pooled plasma of human immunodeficiency virus (HIV)-infected individuals, soluble CD4 and anti-HIV-1 neutralizing mAbs, the epitopes of which were known. The results show that SHIV-KS661 had tier 1 neutralization sensitivity, but monkey-adapted R5 tropic SHIV-MK38 acquired neutralization resistance similar to that of tier 2 or 3 as a clone virus. Sequence analysis of the env gene suggested that the neutralization-resistant phenotype of SHIV-MK38 was acquired by conformational changes in Env associated with the net charge and potential N-linked glycosylation sites. To examine the relationship between neutralization phenotype and stably persistent infection in monkeys, we performed in vivo rectal inoculation experiments using a SHIV-MK38 molecular clone. The results showed that one of three rhesus monkeys exhibited durable infection with a plasma viral load of 105 copies ml- 1 despite the high antibody responses that occurred in the host. Whilst further improvements are required in the development of a challenge virus, it will be useful to generate a neutralization-resistant R5 tropic molecular clone of the SHIV-89.6 lineage commonly used for vaccine development - a result that can be used to explore the foundation of AIDS pathogenesis.


Subject(s)
Viral Proteins/metabolism , Animals , Cell Line , Cloning, Molecular , HIV , Humans , Macaca mulatta , Models, Molecular , Protein Conformation , RNA, Viral/genetics , Simian Immunodeficiency Virus , Viral Proteins/genetics , Virus Replication
12.
J Virol ; 89(7): 3965-75, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25609821

ABSTRACT

UNLABELLED: In 2001-2002, six of seven Japanese macaques (Macaca fuscata) died after developing hemorrhagic syndrome at the Kyoto University Primate Research Institute (KUPRI). While the cause of death was unknown at the time, we detected simian retrovirus 4 (SRV-4) in samples obtained from a similar outbreak in 2008-2011, during which 42 of 43 Japanese macaques died after exhibiting hemorrhagic syndrome. In this study, we isolated SRV-4 strain PRI-172 from a Japanese macaque showing severe thrombocytopenia. When inoculated into four Japanese macaques, the isolate induced severe thrombocytopenia in all within 37 days. We then constructed an infectious molecular clone of strain PRI-172, termed pSR415, and inoculated the clone-derived virus into two Japanese macaques. These animals also developed severe thrombocytopenia in just 31 days after inoculation, and the virus was reisolated from blood, bone marrow, and stool. At necropsy, we observed bleeding from the gingivae and subcutaneous bleeding in all animals. SRV-4 infected a variety of tissues, especially in digestive organs, including colon and stomach, as determined by real-time reverse transcription-PCR (RT-PCR) and immunohistochemical staining. Furthermore, we identified the SRV-4 receptor as ASCT2, a neutral amino acid transporter. ASCT2 mRNA was expressed in a variety of tissues, and the distribution of SRV-4 proviruses in infected Japanese macaques correlated well with the expression levels of ASCT2 mRNA. From these results, we conclude that the causative agent of hemorrhagic syndrome in KUPRI Japanese macaques was SRV-4, and its receptor is ASCT2. IMPORTANCE: During two separate outbreaks at the KUPRI, in 2001-2002 and 2008-2011, 96% of Japanese macaques (JM) that developed an unknown hemorrhagic syndrome died. Here, we isolated SRV-4 from a JM developing thrombocytopenia. The SRV-4 isolate and a molecularly cloned SRV-4 induced severe thrombocytopenia in virus-inoculated JMs within 37 days. At necropsy, we observed bleeding from gingivae and subcutaneous bleeding in all affected JMs and reisolated SRV-4 from blood, bone marrow, and stool. The distribution of SRV-4 proviruses in tissues correlated with the mRNA expression levels of ASCT2, which we identified as the SRV-4 receptor. From these results, we conclude that SRV-4 was the causative agent of hemorrhagic syndrome in JMs in KUPRI.


Subject(s)
Betaretrovirus/physiology , Betaretrovirus/pathogenicity , Hemorrhage/etiology , Primate Diseases/pathology , Primate Diseases/virology , Retroviridae Infections/veterinary , Thrombocytopenia/veterinary , Animals , Blood/virology , Bone Marrow/virology , Feces/virology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Immunohistochemistry , Macaca , Real-Time Polymerase Chain Reaction , Retroviridae Infections/complications , Retroviridae Infections/pathology , Reverse Transcriptase Polymerase Chain Reaction , Thrombocytopenia/complications , Thrombocytopenia/etiology
13.
Bioorg Med Chem Lett ; 26(2): 397-400, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26706175

ABSTRACT

Several CD4 mimics have been reported as HIV-1 entry inhibitors which can block the interaction between the viral envelope glycoprotein gp120 and the cell surface protein CD4. We previously found a lead compound 2 (YYA-021) with high anti-HIV activity and low cytotoxicity. Pharmacokinetic analysis however showed compound 2 to have wide tissue distribution and relatively high distribution volumes in rats and rhesus macaques. In the present study we searched for more hydrophilic CD4 mimics with a view to reducing tissue distribution. A new compound (5) with a 1,3-benzodioxolyl moiety was found to have relatively high anti-HIV activity and no significant cytotoxicity. Compound 5 is more hydrophilic than compound 2 and the pharmacokinetics of the intravenous administration of compound 5 in a rhesus macaque showed that compound 5 has lower tissue distribution than compound 2, suggesting that compound 5 possesses a better profile.


Subject(s)
CD4 Antigens/chemistry , CD4 Antigens/pharmacology , HIV Fusion Inhibitors/chemistry , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , Animals , HIV Envelope Protein gp120/metabolism , HIV Fusion Inhibitors/pharmacokinetics , HIV Infections/drug therapy , Macaca mulatta , Molecular Docking Simulation , Oxamic Acid/analogs & derivatives , Oxamic Acid/chemistry , Oxamic Acid/pharmacokinetics , Oxamic Acid/pharmacology , Piperidines/chemistry , Piperidines/pharmacokinetics , Piperidines/pharmacology , Rats
14.
J Theor Biol ; 376: 39-47, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-25882746

ABSTRACT

Conservation laws are among the most important properties of a physical system, but are not commonplace in biology. We derived a conservation law from the basic model for viral infections which consists in a small set of ordinary differential equations. We challenged the conservation law experimentally for the case of a virus infection in a cell culture. We found that the derived, conserved quantity remained almost constant throughout the infection period, implying that the derived conservation law holds in this biological system. We also suggest a potential use for the conservation law in evaluating the accuracy of experimental measurements.


Subject(s)
Models, Biological , Virus Diseases/metabolism , Animals , Cell Line , Humans , Kinetics
15.
J Virol ; 87(8): 4789-93, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23408611

ABSTRACT

To elucidate the mode of viral persistence in primate lentivirus-infected individuals during combination antiretroviral therapy (cART), four simian immunodeficiency virus 239-infected monkeys were treated with cART for 1 year. The viral env genes prepared from total RNA extracted from the mesenteric lymph nodes collected at the completion of therapy were assessed by single genome amplification. Analyses of nucleotide substitutions and phylogeny revealed no viral evolution during cART.


Subject(s)
Anti-Retroviral Agents/administration & dosage , Evolution, Molecular , Lymph Nodes/virology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/genetics , Animals , Antiretroviral Therapy, Highly Active , Gene Products, env/genetics , Macaca mulatta , Phylogeny , Point Mutation , Sequence Analysis, DNA , Simian Immunodeficiency Virus/isolation & purification
16.
J Virol ; 87(21): 11447-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23966385

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.


Subject(s)
HIV-1/physiology , Macaca mulatta/virology , Viral Tropism , Virus Replication , Animals , Cells, Cultured , Gene Products, gag/genetics , Gene Products, gag/metabolism , HIV-1/genetics , HIV-1/immunology , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Leukocytes, Mononuclear/virology , Mutant Proteins/genetics , Mutant Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
17.
J Med Primatol ; 43(1): 11-21, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24020838

ABSTRACT

BACKGROUND: The CRF08_BC strain is one of the most predominant circulating Human immunodeficiency virus type 1 (HIV-1) strains in the Chinese pandemic. A simian-human immunodeficiency virus (SHIV) encoding HIV-1 CRF08_BC env is highly desirable to evaluate candidate AIDS vaccines in non-human primates. METHODS: SHIV-KBQJ-12, which carries the envelope glycoprotein from QJ001, an infectious molecular clone of HIV-1 CRF08_BC, was generated. The replication capacity of SHIV-KBQJ-12 was determined both in human and rhesus macaque (Macaca mulatta) peripheral blood mononuclear cells (PBMCs) and in Chinese rhesus macaques. RESULTS: SHIV-KBQJ-12 replicated efficiently in human and macaque PBMCs and displayed a preference for CCR5 as an entry coreceptor. Productive infection of two macaques by intravenous inoculation with SHIV-KBQJ-12 was confirmed. CONCLUSIONS: SHIV-KBQJ-12 is an R5-tropic chimeric virus that can establish productive infection both in vitro and in vivo in Chinese rhesus macaques and will be useful to assess candidate HIV-1 CRF08_BC vaccines in China.


Subject(s)
AIDS Vaccines/immunology , Disease Models, Animal , HIV Infections/virology , HIV-1/genetics , Macaca mulatta , Simian Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Animals , CD4 Lymphocyte Count , China , Female , Flow Cytometry , Genome, Viral , HIV Infections/immunology , HIV-1/physiology , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Molecular Sequence Data , Phylogeny , Receptors, CCR5 , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Simian Immunodeficiency Virus/metabolism , Transfection , Viral Load , Virus Replication , env Gene Products, Human Immunodeficiency Virus/metabolism
18.
J Gen Virol ; 94(Pt 10): 2202-2207, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23851439

ABSTRACT

To investigate the potential role of non-human primates (NHPs) in a dengue virus (DENV) epidemic, we conducted serological and genomic studies using plasma samples collected from 100 cynomolgus monkeys (Macaca fascicularis) in an animal breeding facility in the Philippines. An ELISA revealed 21 monkeys with a positive IgM reaction and 19 positive for IgG. Five of the monkeys were positive for both IgM and IgG. Of the 21 IgM-positive samples, a neutralization assay identified seven containing DENV-specific antibodies. We amplified the viral non-structural 1 (NS1) gene in two and the envelope (E) gene in one of these seven samples by RT-PCR. Phylogenetic analyses revealed that these DENV genes belonged to the epidemic DENV-2 family, not the sylvatic DENV family. These results suggest that NHPs may serve as a reservoir of epidemic DENV; therefore, the ecology of the urban DENV infection cycle should be investigated in these animals in detail.


Subject(s)
Dengue Virus/immunology , Dengue/veterinary , Epidemics/veterinary , Macaca fascicularis , Monkey Diseases/epidemiology , Animals , Antibodies, Viral/blood , Dengue/blood , Dengue/epidemiology , Dengue/virology , Dengue Virus/classification , Dengue Virus/genetics , Immunoglobulin G/blood , Immunoglobulin M/blood , Molecular Sequence Data , Monkey Diseases/blood , Monkey Diseases/virology , Philippines/epidemiology , Phylogeny
19.
J Gen Virol ; 94(Pt 12): 2710-2716, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24026672

ABSTRACT

Simian-human immunodeficiency virus (SHIV) carrying the envelope from the clade B clinical human immunodeficiency virus type 1 (HIV-1) isolate MNA, designated SHIV MNA, was generated through intracellular homologous recombination. SHIV MNA inherited biological properties from the parental HIV-1, including CCR5 co-receptor preference, resistance to neutralization by the anti-V3 loop mAb KD-247 and loss of resistance in the presence of the CD4-mimic small-molecule YYA-021. SHIV MNA showed productive replication in rhesus macaque PBMCs. Experimental infection of a rhesus macaque with SHIV MNA caused a transient but high titre of plasma viral RNA and a moderate antibody response. Immunoglobulin in the plasma at 24 weeks post-infection was capable of neutralizing SHIV MNA in the presence but not in the absence of YYA-021. SHIV MNA could serve a model for development of novel therapeutic interventions based on CD4-mimic-mediated conversion of envelope protein susceptible to antibody neutralization.


Subject(s)
Antibodies, Neutralizing/immunology , CD4 Antigens/immunology , HIV-1/immunology , Molecular Mimicry/immunology , Recombination, Genetic , Simian Immunodeficiency Virus/immunology , Virus Replication , Animals , HIV Antibodies/immunology , HIV-1/genetics , HIV-1/pathogenicity , HIV-1/physiology , Humans , Leukocytes, Mononuclear/virology , Macaca mulatta , Neutralization Tests , RNA, Viral/blood , Receptors, CCR5/immunology , Receptors, CCR5/physiology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/pathogenicity , Simian Immunodeficiency Virus/physiology
20.
Bioorg Med Chem ; 21(24): 7884-9, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24189188

ABSTRACT

To date, several small molecules of CD4 mimics, which can suppress competitively the interaction between an HIV-1 envelope glycoprotein gp120 and a cellular surface protein CD4, have been reported as viral entry inhibitors. A lead compound 2 (YYA-021) with relatively high potency and low cytotoxicity has been identified previously by SAR studies. In the present study, the pharmacokinetics of the intravenous administration of compound 2 in rats and rhesus macaques is reported. The half-lives of compound 2 in blood in rats and rhesus macaques suggest that compound 2 shows wide tissue distribution and relatively high distribution volumes. A few hours after the injection, both plasma concentrations of compound 2 maintained micromolar levels, indicating it might have promise for intravenous administration when used combinatorially with anti-gp120 monoclonal antibodies.


Subject(s)
CD4 Antigens/chemistry , HIV Fusion Inhibitors/pharmacokinetics , Molecular Mimicry , Oxamic Acid/analogs & derivatives , Piperidines/pharmacokinetics , Administration, Intravenous , Adsorption , Animals , CD4 Antigens/metabolism , HIV Fusion Inhibitors/administration & dosage , HIV Fusion Inhibitors/chemistry , Half-Life , Macaca mulatta , Molecular Structure , Oxamic Acid/administration & dosage , Oxamic Acid/chemistry , Oxamic Acid/pharmacokinetics , Piperidines/administration & dosage , Piperidines/chemistry , Rats , Rats, Sprague-Dawley , Surface Properties , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL