ABSTRACT
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Subject(s)
Heart Defects, Congenital , Meningeal Neoplasms , Meningioma , Animals , Adaptor Proteins, Signal Transducing/metabolism , Heart Defects, Congenital/genetics , Meningeal Neoplasms/genetics , Meningioma/genetics , Meningioma/pathology , Mutation , Skull/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Humans , Tumor Necrosis Factor Receptor-Associated Peptides and ProteinsABSTRACT
BACKGROUND: Cerebral cavernous malformations (CCMs) are common sporadic and inherited vascular malformations of the central nervous system. Although familial CCMs are linked to loss-of-function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3), the genetic cause of sporadic CCMs, representing 80% of cases, remains incompletely understood. METHODS: We developed two mouse models harboring mutations identified in human meningiomas with the use of the prostaglandin D2 synthase (PGDS) promoter. We performed targeted DNA sequencing of surgically resected CCMs from patients and confirmed our findings by droplet digital polymerase-chain-reaction analysis. RESULTS: We found that in mice expressing one of two common genetic drivers of meningioma - Pik3ca H1047R or AKT1 E17K - in PGDS-positive cells, a spectrum of typical CCMs develops (in 22% and 11% of the mice, respectively) instead of meningiomas, which prompted us to analyze tissue samples from sporadic CCMs from 88 patients. We detected somatic activating PIK3CA and AKT1 mutations in 39% and 1%, respectively, of lesion tissue from the patients. Only 10% of lesions harbored mutations in the CCM genes. We analyzed lesions induced by the activating mutations Pik3ca H1074R and AKT1 E17K in mice and identified the PGDS-expressing pericyte as the probable cell of origin. CONCLUSIONS: In tissue samples from sporadic CCMs, mutations in PIK3CA were represented to a greater extent than mutations in any other gene. The contribution of somatic mutations in the genes that cause familial CCMs was comparatively small. (Funded by the Fondation ARC pour la Recherche contre le Cancer and others.).
Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Intracranial Arteriovenous Malformations/genetics , Mutation , Proto-Oncogene Proteins c-akt/genetics , Animals , Disease Models, Animal , Female , Humans , Intracranial Arteriovenous Malformations/pathology , KRIT1 Protein/genetics , Male , Meningioma/genetics , Mice , Mice, Inbred StrainsABSTRACT
INTRODUCTION: Meningiomas are associated with several gonadal steroid hormone-related risk factors and demonstrate a predominance in females. These associations led to investigations of the role that hormones may have on meningioma growth and development. While it is now accepted that most meningiomas express progesterone and somatostatin receptors, the conclusion for other receptors has been less definitive. METHODS: We performed a review of what is known regarding the relationship between hormones and meningiomas in the published literature. Furthermore, we reviewed clinical trials related to hormonal agents in meningiomas using MEDLINE PubMed, Scopus, and the NIH clinical trials database. RESULTS: We identify that all steroid-hormone trials lacked receptor identification or positive receptor status in the majority of patients. In contrast, four out of five studies involving somatostatin analogs used positive receptor status as part of the inclusion criteria. CONCLUSIONS: Several clinical trials have recently been completed or are now underway using somatostatin analogs in combination with other therapies that appear promising, but a reevaluation of hormone-based monotherapy is warranted. Synthesizing this evidence, we clarify the remaining questions and present future directions for the study of the biological role and therapeutic potential of hormones in meningioma and discuss how the stratification of patients using features such as grade, receptor status, and somatic mutations, might be used for future trials to select patients most likely to benefit from specific therapies.
Subject(s)
Meningeal Neoplasms , Meningioma , Female , Humans , Meningioma/drug therapy , Meningioma/genetics , Meningeal Neoplasms/drug therapy , Meningeal Neoplasms/genetics , Receptors, Progesterone , Receptors, Estrogen , Progesterone , Somatostatin/therapeutic useABSTRACT
OBJECTIVE: While adjuvant treatment regimens have been modified for older patients with glioblastoma (GBM), surgical strategies have not been tailored. METHODS: Clinical data of 48 consecutive patients aged 70 years or older, who underwent surgical resection for GBM with intraoperative ultrasonography (IoUS) alone or combination with intraoperative MRI (IoMRI) at Yale New Haven Hospital were retrospectively reviewed. Variables were analyzed, and comparative analyses were performed. RESULTS: The addition of IoMRI was not superior to IoUS alone in terms of overall survival (OS) (P = 0.306), Karnofsky Performance Score (KPS) at postoperative 6 weeks (P = 0.704) or extent of resection (P = 0.263). Length of surgery (LOSx), however, was significantly longer (P = 0.0002) in the IoMRI group. LOSx (P = 0.015) and hospital stay (P = 0.025) were predictors of postoperative complications. Increased EOR (GTR or NTR) (P = 0.030), postoperative adjuvant treatment (P < 0.0001) and postoperative complications (P = 0.006) were predictive for OS. Patients with relatively lower preoperative KPS scores (<70) showed significant improvement at postoperative 6 weeks (P<0.0001). Patients with complications (P = 0.038) were more likely to have lower KPS at postoperative 6 weeks. CONCLUSIONS: Aggressive management with surgical resection should be considered in older patients with GBM, even those with relatively poor KPS. The use of ioMRI in this population does not appear to confer any measurable benefit over ioUS in experienced hands, but prolongs the length of surgery significantly, which is a preventable prognostic factor for impeding care.
Subject(s)
Brain Neoplasms , Glioblastoma , Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Brain Neoplasms/surgery , Glioblastoma/diagnostic imaging , Glioblastoma/mortality , Glioblastoma/surgery , Humans , Karnofsky Performance Status , Neurosurgical Procedures , Postoperative Complications/epidemiology , Retrospective Studies , Treatment OutcomeABSTRACT
PURPOSE: Immunotherapy has gained traction in the treatment of solid tumors but the immunological landscape of pituitary adenomas is not well defined. We sought to investigate the immunological composition in pituitary adenomas using RNA deconvolution (CIBERSORTx) on an existing gene expression dataset for pituitary adenomas. METHODS: We applied an established computational approach (CIBERSORTx) on 134 pituitary adenomas from a previously published gene expression dataset to infer the proportions of 22 subsets of immune cells. We investigated associations between each immune cell type and tumor subtype. RESULTS: We found that the majority of infiltrating immune cells within pituitary adenomas were comprised of M2 macrophages followed by resting CD4+ memory T cells and mast cells. Silent pituitary tumors have higher M2 macrophage fractions when compared to other subtypes. In contrast, Cushing pituitary tumors, both overt and subclinical cases, had higher CD8+ T cells fractions than GH tumors, prolactinomas, hyperthyroid tumors, and silent tumors. CONCLUSIONS: RNA deconvolution of the immune infiltrates of pituitary adenomas using CIBERSORTx suggests that most pituitary adenomas comprise of M2 macrophages, but each adenoma subtype has a unique immune landscape. This may have implications in targeting each adenoma subtype with different immunotherapies.
Subject(s)
Adenoma/immunology , Pituitary Neoplasms/immunology , Adult , Computational Biology/methods , Computer Simulation , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle AgedABSTRACT
OBJECTIVE: The relationship between patient and meningioma characteristics and hormone receptors (HRs) of progesterone, estrogen, and androgen remains poorly defined despite literature suggesting that meningiomas are sensitive to gonadal steroid hormones. Therefore, the authors sought to collect and compare data on this topic by performing a systematic review and meta-analysis of reported studies of HR status in meningiomas. METHODS: A MEDLINE PubMed literature review conducted for articles published between January 1, 1951, and December 31, 2020, resulted in 634 unduplicated articles concerning meningiomas and HRs. There were 114 articles that met the criteria of detailed detection protocols for progesterone receptor (PR), estrogen receptor (ER), and/or androgen receptor (AR) using immunohistochemistry (IHC) or ligand-binding (LB) assays and simultaneous reporting of HR status with at least one variable among age, sex, histology, location, grade, or recurrence. Between-study heterogeneity and risk of bias were evaluated using graphical and statistical methods. The authors performed a multilevel meta-analysis using random-effects modeling on aggregated data (n = 4447) and individual participant data (n = 1363) with subgroup results summarized as pooled effects. A mixed-effects meta-regression using individual participant data was performed to analyze independently associated variables. RESULTS: The 114 selected articles included data for 5810 patients with 6092 tumors analyzed to determine the expression of three HRs in human meningiomas: PRs, ARs, and ERs. The proportions of HR+ meningiomas were estimated to be 0.76 (95% CI 0.72-0.80) for PR+ and 0.50 (95% CI 0.33-0.66) for AR+ meningiomas. ER+ meningioma detection varied depending on the measurement method used and was 0.06 (95% CI 0.03-0.10) with IHC and 0.11 (95% CI 0.06-0.20) with LB assays. There were associations between age and PR and ER expression that varied between male and female patients. PR+ and AR+ were more common in female patients (OR 1.84, 95% CI 1.47-2.29 for PR and OR 4.16, 95% CI 1.62-10.68 for AR). Additionally, PR+ meningiomas were enriched in skull base locations (OR 1.89, 95% CI 1.03-3.48) and meningothelial histology (OR 1.86, 95% CI 1.23-2.81). A meta-regression showed that PR+ was independently associated with age (OR 1.11 95% CI 1.09-1.13; p < 0.0001) and WHO grade I tumors (OR 8.09, 95% CI 3.55-18.44; p < 0.0001). ER+ was negatively associated with meningothelial histology (OR 0.94, 95% CI 0.86-0.98; p = 0.044) and positively associated with convexity location (OR 1.12, 95% CI 1.05-1.18; p = 0.0003). CONCLUSIONS: The association between HRs and meningioma features has been investigated but unexplained for decades. In this study the authors demonstrated that HR status has a strong association with known meningioma features, including WHO grade, age, female sex, histology, and anatomical location. Identifying these independent associations allows for a better understanding of meningioma heterogeneity and provides a foundation for revisiting targeted hormonal therapy in meningioma on the basis of proper patient stratification according to HR status.
Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Male , Female , Meningioma/pathology , Meningeal Neoplasms/pathology , Immunohistochemistry , Skull Base/pathology , Receptors, Estrogen , Gonadal Steroid HormonesABSTRACT
Hedgehog signaling mediates embryologic development of the central nervous system and other tissues and is frequently hijacked by neoplasia to facilitate uncontrolled cellular proliferation. Meningiomas, the most common primary brain tumor, exhibit Hedgehog signaling activation in 6.5% of cases, triggered by recurrent mutations in pathway mediators such as SMO. In this study, we find 35.6% of meningiomas that lack previously known drivers acquired various types of somatic structural variations affecting chromosomes 2q35 and 7q36.3. These cases exhibit ectopic expression of Hedgehog ligands, IHH and SHH, respectively, resulting in Hedgehog signaling activation. Recurrent tandem duplications involving IHH permit de novo chromatin interactions between super-enhancers within DIRC3 and a locus containing IHH. Our work expands the landscape of meningioma molecular drivers and demonstrates enhancer hijacking of Hedgehog ligands as a route to activate this pathway in neoplasia.
Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Meningioma/genetics , Ligands , Signal Transduction , Meningeal Neoplasms/geneticsABSTRACT
BACKGROUND: Multiple meningiomas (MMs) rarely occur sporadically. It is unclear whether each individual tumor in a single patient behaves similarly. Moreover, the molecular mechanisms underlying the formation of sporadic MMs and clonal formation etiology of these tumors are poorly understood. METHODS: Patients with spatially separated MMs without prior radiation exposure or a family history who underwent surgical resection of at least two meningiomas were included. Unbiased, comprehensive next generation sequencing was performed, and relevant clinical data was analyzed. RESULTS: Fifteen meningiomas and one dural specimen from six patients were included. The majority of tumors (12/15) were WHO Grade I; one patient had bilateral MMs, one of which was Grade II, while the other was Grade I. We found 11/15 of our cohort specimens were of NF2-loss subtype. Meningiomas from 5/6 patients had a monoclonal origin, with the tumor from the remaining patient showing evidence for independent clonal formation. We identified a novel case of non-NF2 mutant MM with monoclonal etiology. MMs due to a monoclonal origin did not always display a homogenous genomic profile, but rather exhibited heterogeneity due to branching evolution. CONCLUSIONS: Both NF2-loss and non-NF2 driven MMs can form due to monoclonal expansion and those tumors can acquire inter-tumoral heterogeneity through branched evolution. Grade I and II meningiomas can occur in the same patient. Thus, the molecular make-up and clinical behavior of one tumor in MMs, cannot reliably lend insight into that of the others and suggests the clinical management strategy for MMs should be tailored individually.
Subject(s)
Meningeal Neoplasms , Meningioma , Cohort Studies , Genomics , Humans , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningioma/genetics , Meningioma/pathologyABSTRACT
BACKGROUND: Malignant meningiomas are fatal and lack effective therapy. As M2 macrophages are the most prevalent immune cell type in human meningiomas, we hypothesized that normalizing this immunosuppressive population would be an effective treatment strategy. METHODS: We used CIBERSORTx to examine the proportions of 22 immune subsets in human meningiomas. We targeted the colony-stimulating factor 1 (CSF1) or CSF1 receptor (CSF1R) axis, an important regulator of macrophage phenotype, using monoclonal antibodies (mAbs) in a novel immunocompetent murine model (MGS1) for malignant meningioma. RNA sequencing (RNA-seq) was performed to identify changes in gene expression in the tumor microenvironment (TME). Mass cytometry was used to delineate changes in immune subsets after treatment. We measured patients' plasma CSF1 levels using ELISA and CSF1R expression using multiplex quantitative immunofluorescence in a human meningioma tissue microarray. RESULTS: Human meningiomas are heavily enriched for immunosuppressive myeloid cells. MGS1 recapitulates the TME of human meningiomas, including an abundance of myeloid cells, a paucity of infiltrating T cells, and low programmed death ligand 1 (PD-L1) expression. Treatment of murine meningiomas with anti-CSF1/CSF1R, but not programmed cell death receptor 1 (PD-1), mAbs abrogate tumor growth. RNA-seq and mass cytometry analyses reveal a myeloid cell reprogramming with limited effect on T cells in the TME. CSF1 plasma levels are significantly elevated in human patients, and CSF1R is highly expressed on CD163+ macrophages within the human TME. CONCLUSION: Our findings suggest that anti-CSF1/CSF1R antibody treatment may be an effective normalization cancer immunotherapy for malignant meningiomas.
Subject(s)
Macrophage Colony-Stimulating Factor , Meningeal Neoplasms , Meningioma , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Humans , Macrophages , Meningeal Neoplasms/drug therapy , Meningioma/drug therapy , Mice , Tumor MicroenvironmentABSTRACT
BACKGROUND: We and others have identified mutually exclusive molecular subgroups of meningiomas; however, the implications of this classification for clinical prognostication remain unclear. Integrated genomic and epigenomic analyses implicate unique oncogenic processes associated with each subgroup, suggesting the potential for divergent clinical courses. The aim of this study was to understand the associated clinical outcomes of each subgroup, as this could optimize treatment for patients. METHODS: We analyzed outcome data for 469 meningiomas of known molecular subgroup, including extent of resection, postoperative radiation, surveillance imaging, and time to recurrence, when applicable. Statistical relationships between outcome variables and subgroup were assessed. Features previously associated with recurrence were further investigated after stratification by subgroup. We used Kaplan-Meier analyses to compare progression-free survival, and identified factors significantly associated with recurrence using Cox proportional hazards modeling. RESULTS: Meningioma molecular subgroups exhibited divergent clinical courses at 2 years of follow-up, with several aggressive subgroups (NF2, PI3K, HH, tumor necrosis factor receptor-associated factor 7 [TRAF7]) recurring at an average rate of 22 times higher than others (KLF4, POLR2A, SMARCB1). PI3K-activated tumors recurred earlier than other subgroups but had intermediate long-term outcome. Among low-grade tumors, HH and TRAF7 meningiomas exhibited elevated recurrence compared with other subgroups. Recurrence of NF2 tumors was associated with male sex, high grade, and elevated Ki-67. Multivariate analysis identified molecular subgroup as an independent predictor of recurrence, along with grade and previous recurrence. CONCLUSION: We describe distinct clinical outcomes and recurrence rates associated with meningioma molecular subgroups. Our findings emphasize the importance of genomic characterization to guide postoperative management decisions for meningiomas.
Subject(s)
Meningeal Neoplasms , Meningioma , Epigenomics , Genomics , Humans , Kruppel-Like Factor 4 , Male , Meningeal Neoplasms/genetics , Meningioma/genetics , Neoplasm Recurrence, Local/genetics , Retrospective StudiesABSTRACT
Importance: Moyamoya disease (MMD), a progressive vasculopathy leading to narrowing and ultimate occlusion of the intracranial internal carotid arteries, is a cause of childhood stroke. The cause of MMD is poorly understood, but genetic factors play a role. Several familial forms of MMD have been identified, but the cause of most cases remains elusive, especially among non-East Asian individuals. Objective: To assess whether ultrarare de novo and rare, damaging transmitted variants with large effect sizes are associated with MMD risk. Design, Setting, and Participants: A genetic association study was conducted using whole-exome sequencing case-parent MMD trios in a small discovery cohort collected over 3.5 years (2016-2019); data were analyzed in 2020. Medical records from US hospitals spanning a range of 1 month to 1.5 years were reviewed for phenotyping. Exomes from a larger validation cohort were analyzed to identify additional rare, large-effect variants in the top candidate gene. Participants included patients with MMD and, when available, their parents. All participants who met criteria and were presented with the option to join the study agreed to do so; none were excluded. Twenty-four probands (22 trios and 2 singletons) composed the discovery cohort, and 84 probands (29 trios and 55 singletons) composed the validation cohort. Main Outcomes and Measures: Gene variants were identified and filtered using stringent criteria. Enrichment and case-control tests assessed gene-level variant burden. In silico modeling estimated the probability of variant association with protein structure. Integrative genomics assessed expression patterns of MMD risk genes derived from single-cell RNA sequencing data of human and mouse brain tissue. Results: Of the 24 patients in the discovery cohort, 14 (58.3%) were men and 18 (75.0%) were of European ancestry. Three of 24 discovery cohort probands contained 2 do novo (1-tailed Poisson P = 1.1 × 10-6) and 1 rare, transmitted damaging variant (12.5% of cases) in DIAPH1 (mammalian diaphanous-1), a key regulator of actin remodeling in vascular cells and platelets. Four additional ultrarare damaging heterozygous DIAPH1 variants (3 unphased) were identified in 3 other patients in an 84-proband validation cohort (73.8% female, 77.4% European). All 6 patients were non-East Asian. Compound heterozygous variants were identified in ena/vasodilator-stimulated phosphoproteinlike protein EVL, a mammalian diaphanous-1 interactor that regulates actin polymerization. DIAPH1 and EVL mutant probands had severe, bilateral MMD associated with transfusion-dependent thrombocytopenia. DIAPH1 and other MMD risk genes are enriched in mural cells of midgestational human brain. The DIAPH1 coexpression network converges in vascular cell actin cytoskeleton regulatory pathways. Conclusions and Relevance: These findings provide the largest collection to date of non-East Asian individuals with sporadic MMD harboring pathogenic variants in the same gene. The results suggest that DIAPH1 is a novel MMD risk gene and impaired vascular cell actin remodeling in MMD pathogenesis, with diagnostic and therapeutic ramifications.
Subject(s)
Formins/genetics , Moyamoya Disease/genetics , Adult , Age of Onset , Cell Adhesion Molecules/genetics , Child , Child, Preschool , Cohort Studies , Computer Simulation , Exome/genetics , Female , Genetic Variation , Humans , Infant , Magnetic Resonance Imaging , Male , Middle Aged , Moyamoya Disease/diagnostic imaging , Phenotype , Sequence Analysis, RNA , White People , Exome SequencingABSTRACT
Intracranial aneurysm (IA) rupture leads to subarachnoid hemorrhage, a sudden-onset disease that often causes death or severe disability. Although genome-wide association studies have identified common genetic variants that increase IA risk moderately, the contribution of variants with large effect remains poorly defined. Using whole-exome sequencing, we identified significant enrichment of rare, deleterious mutations in PPIL4, encoding peptidyl-prolyl cis-trans isomerase-like 4, in both familial and index IA cases. Ppil4 depletion in vertebrate models causes intracerebral hemorrhage, defects in cerebrovascular morphology and impaired Wnt signaling. Wild-type, but not IA-mutant, PPIL4 potentiates Wnt signaling by binding JMJD6, a known angiogenesis regulator and Wnt activator. These findings identify a novel PPIL4-dependent Wnt signaling mechanism involved in brain-specific angiogenesis and maintenance of cerebrovascular integrity and implicate PPIL4 gene mutations in the pathogenesis of IA.
Subject(s)
Brain/blood supply , Cyclophilins/genetics , Intracranial Aneurysm/genetics , Neovascularization, Pathologic/genetics , RNA-Binding Proteins/genetics , Cyclophilins/physiology , Humans , Mutation , RNA-Binding Proteins/physiology , Exome Sequencing , Wnt Signaling Pathway/physiologyABSTRACT
Introduction Medulloblastoma (MB) is an aggressive brain tumor most commonly found in children. Although prognostic factors are well studied in children, factors affecting survival in adults with medulloblastoma are unclear. Methods We queried the 1973-2015 United States Surveillance, Epidemiology, and End Results (SEER) registry to identify all adult cases of medulloblastoma, and performed multivariate survival analyses to assess the relationships amongst various clinical variables, including age, sex, race, tumor location, treatment modalities, and overall survival. Results A total of 857 patients, 20 years of age and older, with MB were identified in the SEER registry. Adult cases presented most frequently in the cerebellum (91.6%) compared to other less common regions (brain stem 3.2%, brain 2.2%, ventricle 1.8%). The overall median survival for adult MB is 60 months (SD = 94.3) and survival time is related to tumor location and course of treatment (P < 0.001). Multivariate Cox proportional hazard models showed that lesions found outside the cerebellum corresponded to worse median survival times (37 months) than those in the cerebellum (63 months) (hazard ratio 1.69, 95% CI 1.321-2.158, P = 0.001). Patients who were assigned chemotherapy had shorter survival (54 months) than those who were not (67 months) (HR 1.4515, 95% CI 1.26-1.671, P < 0.001), but receiving radiation therapy was associated with better overall survival (66 months) relative to not receiving radiation (25 months) (HR 0.581, 95% CI 0.48-0.70, P < 0.001). Conclusions Tumor location appears to be a significant prognostic factor for survival in adult MB. Recommended treatment regimes, likely reflective of the underlying aggressiveness of the tumor, also seem to impact survival.
ABSTRACT
Background: Recent studies have identified several molecular subgroups of medulloblastoma associated with distinct clinical outcomes; however, no robust gene signature has been established for prognosis prediction. Our objective was to construct a robust gene signature-based model to predict the prognosis of patients with medulloblastoma. Methods: Expression data of medulloblastomas were acquired from the Gene Expression Omnibus (GSE85217, n = 763; GSE37418, n = 76). To identify genes associated with overall survival (OS), we performed univariate survival analysis and least absolute shrinkage and selection operator (LASSO) Cox regression. A risk score model was constructed based on selected genes and was validated using multiple datasets. Differentially expressed genes (DEGs) between the risk groups were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and protein-protein interaction (PPI) analyses were performed. Network modules and hub genes were identified using Cytoscape. Furthermore, tumor microenvironment (TME) was evaluated using ESTIMATE algorithm. Tumor-infiltrating immune cells (TIICs) were inferred using CIBERSORTx. Results: A 13-gene model was constructed and validated. Patients classified as high-risk group had significantly worse OS than those as low-risk group (Training set: p < 0.0001; Validation set 1: p < 0.0001; Validation set 2: p = 0.00052). The area under the curve (AUC) of the receiver operating characteristic (ROC) analysis indicated a good performance in predicting 1-, 3-, and 5-year OS in all datasets. Multivariate analysis integrating clinical factors demonstrated that the risk score was an independent predictor for the OS (validation set 1: p = 0.001, validation set 2: p = 0.004). We then identified 265 DEGs between risk groups and PPI analysis predicted modules that were highly related to central nervous system and embryonic development. The risk score was significantly correlated with programmed death-ligand 1 (PD-L1) expression (p < 0.001), as well as immune score (p = 0.035), stromal score (p = 0.010), and tumor purity (p = 0.010) in Group 4 medulloblastomas. Correlations between the 13-gene signature and the TIICs in Sonic hedgehog and Group 4 medulloblastomas were revealed. Conclusion: Our study constructed and validated a robust 13-gene signature model estimating the prognosis of medulloblastoma patients. We also revealed genes and pathways that may be related to the development and prognosis of medulloblastoma, which might provide candidate targets for future investigation.
ABSTRACT
OBJECTIVES: We aimed to investigate the prevalence and cost-associated risk factors for hospital stays for Neurofibromatosis Type 2 (NF2) patients in the past decade. PATIENTS AND METHODS: A multi-year cross-sectional study was performed using the National Inpatient Sample. Patients with a diagnosis code of NF2 according to the International Classification of Diseases, 9th Revision, Clinical Modification coding system were queried from 2006-2014. Sampling discharge weights were used to calculate trend estimates for national demographics, hospital characteristics, comorbidities, and surgical interventions. Regression analysis was performed to determine significant independent associations between comorbidities and admission cost. RESULTS: From 2006-2014, there were 5,078 discharges for patients diagnosed with NF2. Patient demographics, comorbidities, and procedures performed were overall consistent over time. The most common admission diagnoses were hearing loss (28.2 %), acoustic schwannoma (14.3 %), cranial meningioma (11.8 %) and epilepsy (10.8 %). The most common procedures performed were craniotomy and meningioma resection (10.2 %) and acoustic neuroma open resection (7.9 %). The median inflation-adjusted cost of admission did not change over time, with an admission cost value of $12,387 [6,042 - 26,051]. On regression analysis, obstructive hydrocephalus, craniotomy and meningioma resection, acoustic neuroma open resection, and spine tumor resection were all independent predictors of increased cost. CONCLUSION: The care for NF2 patients continues to evolve over time. We report the prevalence of patient demographics, comorbidities, and treatments in the NF2 inpatient population. Further studies are warranted to better understand the risk factors for higher costs, so that patients with NF2 may continue to receive life-long quality care in a cost-effective manner.
Subject(s)
Cost of Illness , Hospitalization/economics , Length of Stay/economics , Meningioma/epidemiology , Neurofibromatosis 2/epidemiology , Neuroma, Acoustic/epidemiology , Neurosurgical Procedures/economics , Adolescent , Adult , Comorbidity , Cross-Sectional Studies , Female , Humans , Male , Meningioma/economics , Meningioma/surgery , Middle Aged , Neurofibromatosis 2/economics , Neurofibromatosis 2/surgery , Neuroma, Acoustic/economics , Neuroma, Acoustic/surgery , Prevalence , Risk Factors , Treatment Outcome , United States , Young AdultABSTRACT
OBJECTIVE: The association of seizures with meningiomas is poorly understood. Moreover, any relationship between seizures and the underlying meningioma genomic subgroup has not been studied. Herein, the authors report on their experience with identifying clinical and genomic factors associated with preoperative and postoperative seizure presentation in meningioma patients. METHODS: Clinical and genomic sequencing data on 394 patients surgically treated for meningioma at Yale New Haven Hospital were reviewed. Correlations between clinical, histological, or genomic variables and the occurrence of preoperative and postoperative seizures were analyzed. Logistic regression models were developed for assessing multiple risk factors for pre- and postoperative seizures. Mediation analyses were also conducted to investigate the causal pathways between genomic subgroups and seizures. RESULTS: Seventeen percent of the cohort had presented with preoperative seizures. In a univariate analysis, patients with preoperative seizures were more likely to have tumors with a somatic NF2 mutation (p = 0.020), WHO grade II or III tumor (p = 0.029), atypical histology (p = 0.004), edema (p < 0.001), brain invasion (p = 0.009), and worse progression-free survival (HR 2.68, 95% CI 1.30-5.50). In a multivariate analysis, edema (OR 3.11, 95% CI 1.46-6.65, p = 0.003) and atypical histology (OR 2.00, 95% CI 1.03-3.90, p = 0.041) were positive predictors of preoperative seizures, while genomic subgroup was not, such that the effect of an NF2 mutation was indirectly mediated through atypical histology and edema (p = 0.012). Seizure freedom was achieved in 83.3% of the cohort, and only 20.8% of the seizure-free patients, who were more likely to have undergone gross-total resection (p = 0.031), were able to discontinue antiepileptic drug use postoperatively. Preoperative seizures (OR 3.54, 95% CI 1.37-9.12, p = 0.009), recurrent tumors (OR 2.89, 95% CI 1.08-7.74, p = 0.035), and tumors requiring postoperative radiation (OR 2.82, 95% CI 1.09-7.33, p = 0.033) were significant predictors of postoperative seizures in a multivariate analysis. CONCLUSIONS: Seizures are relatively common at meningioma presentation. While NF2-mutated tumors are significantly associated with preoperative seizures, the association appears to be mediated through edema and atypical histology. Patients who undergo radiation and/or have a recurrence are at risk for postoperative seizures, regardless of the extent of resection. Preoperative seizures may indeed portend a more potentially aggressive molecular entity and challenging clinical course with a higher risk of recurrence.
ABSTRACT
OBJECTIVE: Recent large-cohort sequencing studies have investigated the genomic landscape of meningiomas, identifying somatic coding alterations in NF2, SMARCB1, SMARCE1, TRAF7, KLF4, POLR2A, BAP1, and members of the PI3K and Hedgehog signaling pathways. Initial associations between clinical features and genomic subgroups have been described, including location, grade, and histology. However, further investigation using an expanded collection of samples is needed to confirm previous findings, as well as elucidate relationships not evident in smaller discovery cohorts. METHODS: Targeted sequencing of established meningioma driver genes was performed on a multiinstitution cohort of 3016 meningiomas for classification into mutually exclusive subgroups. Relevant clinical information was collected for all available cases and correlated with genomic subgroup. Nominal variables were analyzed using Fisher's exact tests, while ordinal and continuous variables were assessed using Kruskal-Wallis and 1-way ANOVA tests, respectively. Machine-learning approaches were used to predict genomic subgroup based on noninvasive clinical features. RESULTS: Genomic subgroups were strongly associated with tumor locations, including correlation of HH tumors with midline location, and non-NF2 tumors in anterior skull base regions. NF2 meningiomas were significantly enriched in male patients, while KLF4 and POLR2A mutations were associated with female sex. Among histologies, the results confirmed previously identified relationships, and observed enrichment of microcystic features among "mutation unknown" samples. Additionally, KLF4-mutant meningiomas were associated with larger peritumoral brain edema, while SMARCB1 cases exhibited elevated Ki-67 index. Machine-learning methods revealed that observable, noninvasive patient features were largely predictive of each tumor's underlying driver mutation. CONCLUSIONS: Using a rigorous and comprehensive approach, this study expands previously described correlations between genomic drivers and clinical features, enhancing our understanding of meningioma pathogenesis, and laying further groundwork for the use of targeted therapies. Importantly, the authors found that noninvasive patient variables exhibited a moderate predictive value of underlying genomic subgroup, which could improve with additional training data. With continued development, this framework may enable selection of appropriate precision medications without the need for invasive sampling procedures.