Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Eur Phys J E Soft Matter ; 44(11): 133, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34718887

ABSTRACT

Geometrical properties of two-dimensional mixtures near the jamming transition point are numerically investigated using harmonic particles under mechanical training. The configurations generated by the quasi-static compression and oscillatory shear deformations exhibit anomalous suppression of the density fluctuations, known as hyperuniformity, below and above the jamming transition. For the jammed system trained by compression above the transition point, the hyperuniformity exponent increases. For the system below the transition point under oscillatory shear, the hyperuniformity exponent also increases until the shear amplitude reaches the threshold value. The threshold value matches with the transition point from the point-reversible phase where the particles experience no collision to the loop-reversible phase where the particles' displacements are non-affine during a shear cycle before coming back to an original position. The results demonstrated in this paper are explained in terms of neither of universal criticality of the jamming transition nor the nonequilibrium phase transitions.

2.
J Chem Phys ; 154(1): 014502, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33412873

ABSTRACT

We study supercooled dynamics in a quantum hard-sphere liquid using quantum mode-coupling formulation. In the moderate quantum regime, classical cage effects lead to slower dynamics compared to the strongly quantum regime, where tunneling overcomes classical caging, leading to faster relaxation. As a result, the glass transition critical density can become significantly higher than for the classical liquids. A perturbative approach is used to solve time dependent quantum mode-coupling equations to study in detail the dynamics of the supercooled liquid in the moderate quantum regime. Similar to the classical case, the relaxation time shows the power-law increase with the increase in the density in the supercooled regime. However, the power-law exponent is found to be dependent on the quantumness; it increases linearly as the quantumness is increased in the moderate quantum regime.

3.
J Chem Phys ; 154(16): 164512, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940825

ABSTRACT

Frequency-dependence of specific heat in supercooled hard sphere liquid is computed using quantum mode-coupling theory (QMCT). Mode-coupling equations are solved using a recently proposed perturbative method that allows us to study relaxation in the moderate quantum regime where quantum effects assist liquid to glass transition. Zwanzig's formulation is used to compute the frequency-dependent specific heat in the supercooled state using dynamical information from QMCT. Specific heat shows strong variation as the quantumness of the liquid is changed, which becomes more significant as density is increased. It is found that, near the transition point, different dynamical modes contribute to specific heat in classical and quantum liquids.

4.
Phys Rev Lett ; 124(22): 225502, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567904

ABSTRACT

We perform molecular dynamics simulations to investigate the effect of a glass preparation on its yielding transition under oscillatory shear. We use swap Monte Carlo to investigate a broad range of glass stabilities from poorly annealed to highly stable systems. We observe a qualitative change in the nature of yielding, which evolves from ductile to brittle as glass stability increases. Our results disentangle the relative role of mechanical and thermal annealing on the mechanical properties of amorphous solids, which is relevant for various experimental situations from the rheology of soft materials to fatigue failure in metallic glasses.

5.
Soft Matter ; 15(38): 7557-7566, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31528879

ABSTRACT

The reversible-irreversible (RI) transition of particle trajectories in athermal colloidal suspensions under cyclic shear deformation is an archetypal nonequilibrium phase transition which has attracted much attention recently. Most studies of the RI transitions have focused on either dilute limit or very high densities well above the jamming transition point. The transition between the two limiting cases is largely unexplored. In this paper, we study the RI transition of athermal frictionless colloidal particles over a wide range of densities, with emphasis on the region below φJ, by using oscillatory sheared molecular dynamics simulation. We reveal that the nature of the RI transitions in the intermediate densities is very rich. As demonstrated by the previous work by Schreck et al. [Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, 88, 052205], there exist the point-reversible and the loop-reversible phases depending on the density and the shear strain amplitude. We find that, between the two reversible phases, a quasi-irreversible phase where the particles' trajectories are highly non-affine and diffusive. The averaged number of contacts of particles is found to characterize the phase boundaries. We also find that the system undergoes the yielding transition below but in the vicinity of φJ when the strain with a small but finite strain rate is applied. This yielding transition line matches with the RI transition line separating the loop-reversible from the irreversible phases. Surprisingly, the nonlinear rheological response called "softening" has been observed even below φJ. These findings imply that geometrical properties encoded in the sheared configurations control the dynamical transitions.

6.
J Chem Phys ; 150(7): 074503, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30795681

ABSTRACT

We numerically investigate the slow dynamics of a binary mixture of ultrasoft particles interacting with the generalized Hertzian potential. If the softness parameter, α, is small, the particles at high densities start penetrating each other, form clusters, and eventually undergo the glass transition. We find multiple cluster-glass phases characterized by a different number of particles per cluster, whose boundary lines are sharply separated by the cluster size. Anomalous logarithmic slow relaxation of the density correlation functions is observed in the vicinity of these glass-glass phase boundaries, which hints the existence of the higher-order dynamical singularities predicted by the mode-coupling theory. Deeply in the cluster glass phases, it is found that the dynamics of a single particle is decoupled from that of the collective fluctuations.

7.
Phys Rev Lett ; 121(20): 205501, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30500252

ABSTRACT

We use computer simulations to probe the thermodynamic and dynamic properties of a glass former that undergoes an ideal glass transition because of the presence of randomly pinned particles. We find that even deep in the equilibrium glass state, the system relaxes to some extent because of the presence of localized excitations that allow the system to access different inherent structures, thus giving rise to a nontrivial contribution to the entropy. By calculating with high accuracy the vibrational part of the entropy, we show that also in the equilibrium glass state thermodynamics and dynamics give a coherent picture, and that glasses should not be seen as a disordered solid in which the particles undergo just vibrational motion but instead as a system with a highly nonlinear internal dynamics.

8.
Proc Natl Acad Sci U S A ; 112(22): 6914-9, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25976100

ABSTRACT

We use computer simulations to study the thermodynamic properties of a glass-former in which a fraction c of the particles has been permanently frozen. By thermodynamic integration, we determine the Kauzmann, or ideal glass transition, temperature [Formula: see text] at which the configurational entropy vanishes. This is done without resorting to any kind of extrapolation, i.e., [Formula: see text] is indeed an equilibrium property of the system. We also measure the distribution function of the overlap, i.e., the order parameter that signals the glass state. We find that the transition line obtained from the overlap coincides with that obtained from the thermodynamic integration, thus showing that the two approaches give the same transition line. Finally, we determine the geometrical properties of the potential energy landscape, notably the T- and c dependence of the saddle index, and use these properties to obtain the dynamic transition temperature [Formula: see text]. The two temperatures [Formula: see text] and [Formula: see text] cross at a finite value of c and indicate the point at which the glass transition line ends. These findings are qualitatively consistent with the scenario proposed by the random first-order transition theory.

9.
Phys Rev Lett ; 117(23): 239902, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982614

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.117.165701.

10.
Phys Rev Lett ; 117(16): 165701, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27792362

ABSTRACT

Using molecular dynamics simulation, we investigate the slow dynamics of a supercooled binary mixture of soft particles interacting with a generalized Hertzian potential. At low density, it displays typical slow dynamics near its glass transition temperature. At higher densities, particles bond together, forming clusters, and the clusters undergo the glass transition. The number of particles in a cluster increases one by one as the density increases. We demonstrate that there exist multiple cluster-glass phases characterized by a different number of particles per cluster, each of which is separated by distinct minima. Surprisingly, a so-called higher order singularity of the mode-coupling theory signaled by a logarithmic relaxation is observed in the vicinity of the boundaries between monomer and cluster glass phases. The system also exhibits rich and anomalous dynamics in the cluster glass phases, such as the decoupling of the self- and collective dynamics.

11.
Nature ; 462(7269): 83-6, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19890327

ABSTRACT

Glass formation in colloidal suspensions has many of the hallmarks of glass formation in molecular materials. For hard-sphere colloids, which interact only as a result of excluded volume, phase behaviour is controlled by volume fraction, phi; an increase in phi drives the system towards its glassy state, analogously to a decrease in temperature, T, in molecular systems. When phi increases above phi* approximately 0.53, the viscosity starts to increase significantly, and the system eventually moves out of equilibrium at the glass transition, phi(g) approximately 0.58, where particle crowding greatly restricts structural relaxation. The large particle size makes it possible to study both structure and dynamics with light scattering and imaging; colloidal suspensions have therefore provided considerable insight into the glass transition. However, hard-sphere colloidal suspensions do not exhibit the same diversity of behaviour as molecular glasses. This is highlighted by the wide variation in behaviour observed for the viscosity or structural relaxation time, tau(alpha), when the glassy state is approached in supercooled molecular liquids. This variation is characterized by the unifying concept of fragility, which has spurred the search for a 'universal' description of dynamic arrest in glass-forming liquids. For 'fragile' liquids, tau(alpha) is highly sensitive to changes in T, whereas non-fragile, or 'strong', liquids show a much lower T sensitivity. In contrast, hard-sphere colloidal suspensions are restricted to fragile behaviour, as determined by their phi dependence, ultimately limiting their utility in the study of the glass transition. Here we show that deformable colloidal particles, when studied through their concentration dependence at fixed temperature, do exhibit the same variation in fragility as that observed in the T dependence of molecular liquids at fixed volume. Their fragility is dictated by elastic properties on the scale of individual colloidal particles. Furthermore, we find an equivalent effect in molecular systems, where elasticity directly reflects fragility. Colloidal suspensions may thus provide new insight into glass formation in molecular systems.

12.
Phys Rev Lett ; 113(24): 245701, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25541779

ABSTRACT

We analyze, using inhomogeneous mode-coupling theory, the critical scaling behavior of the dynamical susceptibility at a distance ε from continuous second-order glass transitions. We find that the dynamical correlation length ξ behaves generically as ε(-1/3) and that the upper critical dimension is equal to six. More surprisingly, we find that ξ grows with time as ln²t exactly at criticality. All of these results suggest a deep analogy between the glassy behavior of attractive colloids or randomly pinned supercooled liquids and that of the random field Ising model.

14.
Phys Rev Lett ; 109(20): 205701, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23215507

ABSTRACT

Recent studies show that volume fractions φ(J) at the jamming transition of frictionless hard spheres and disks are not uniquely determined but exist over a continuous range. Motivated by this observation, we numerically investigate the dependence of φ(J) on the initial configurations of the parent fluid equilibrated at a volume fraction φ(eq), before compressing to generate a jammed packing. We find that φ(J) remains constant when φ(eq) is small but sharply increases as φ(eq) exceeds the dynamic transition point which the mode-coupling theory predicts. We carefully analyze configurational properties of both jammed packings and parent fluids and find that, while all jammed packings remain isostatic, the increase of φ(J) is accompanied with subtle but distinct changes of local orders, a static length scale, and an exponent of the finite-size scaling. These results are consistent with the scenario of the random first-order transition theory of the glass transition.

15.
J Chem Phys ; 136(7): 074511, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22360252

ABSTRACT

A comprehensive microscopic dynamical theory is presented for the description of quantum fluids as they transform into glasses. The theory is based on a quantum extension of mode-coupling theory. Novel effects are predicted, such as reentrant behavior of dynamical relaxation times. These predictions are supported by path integral ring polymer molecular dynamics simulations. The simulations provide detailed insight into the factors that govern slow dynamics in glassy quantum fluids. Connection to other recent work on both quantum glasses as well as quantum optimization problems is presented.

16.
Phys Rev E ; 106(6-1): 064136, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671198

ABSTRACT

Building on the recently derived inhomogeneous mode-coupling theory, we extend the generalized mode-coupling theory of supercooled liquids to inhomogeneous environments. This provides a first-principles-based, systematic, and rigorous way of deriving high-point dynamical susceptibilities from variations of the many-body dynamic structure factors with respect to their conjugate field. This framework allows for a fully microscopic possibility to probe for collective relaxation mechanisms in supercooled liquids near the mode-coupling glass transition. The behavior of these dynamical susceptibilities is then studied in the context of simplified self-consistent relaxation models.

17.
Phys Rev Lett ; 106(1): 015701, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21231755

ABSTRACT

We numerically investigate the dynamical properties of the one-component Gaussian core model in supercooled states. We find that nucleation is increasingly suppressed with increasing density. The system concomitantly exhibits glassy, slow dynamics characterized by the two-step stretched exponential relaxation of the density correlation and a drastic increase of the relaxation time. We also find a weaker violation of the Stokes-Einstein relation and a smaller non-Gaussian parameter than in typical model glass formers, implying weaker dynamic heterogeneities. Additionally, the agreement of the simulation data with the prediction of mode-coupling theory is exceptionally good, indicating that the nature of the slow dynamics of this ultrasoft particle fluid is mean-field-like. This fact may be understood as a consequence of the long-range nature of the interaction.

18.
J Chem Phys ; 135(2): 024901, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21766965

ABSTRACT

We numerically study thermodynamic and structural properties of the one-component Gaussian core model at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, log T(f), log T(m)∝-ρ(2/3), where ρ is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has already been shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at longer length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.

19.
J Chem Phys ; 135(5): 054901, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21823726

ABSTRACT

We numerically study crystal nucleation and glassy slow dynamics of the one-component Gaussian core model (GCM) at high densities. The nucleation rate at a fixed supercooling is found to decrease as the density increases. At very high densities, the nucleation is not observed at all in the time window accessed by long molecular dynamics (MD) simulation. Concomitantly, the system exhibits typical slow dynamics of the supercooled fluids near the glass transition point. We compare the simulation results of the supercooled GCM with the predictions of mode-coupling theory (MCT) and find that the agreement between them is better than any other model glassformers studied numerically in the past. Furthermore, we find that a violation of the Stokes-Einstein relation is weaker and the non-Gaussian parameter is smaller than canonical glassformers. Analysis of the probability distribution of the particle displacement clearly reveals that the hopping effect is strongly suppressed in the high density GCM. We conclude from these observations that the GCM is more amenable to the mean-field picture of the glass transition than other models. This is attributed to the long-ranged nature of the interaction potential of the GCM in the high density regime. Finally, the intermediate scattering function at small wavevectors is found to decay much faster than its self part, indicating that dynamics of the large-scale density fluctuations decouples with the shorter-ranged caging motion.

20.
J Chem Phys ; 145(21): 216101, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-28799348
SELECTION OF CITATIONS
SEARCH DETAIL