ABSTRACT
Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains.
Subject(s)
Brain Mapping/methods , Cerebral Cortex/anatomy & histology , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Nasal Cavity/anatomy & histology , Neuroimaging/methods , Spectroscopy, Near-Infrared/methods , Algorithms , Animals , Cerebral Cortex/physiology , Data Interpretation, Statistical , Electric Stimulation , Electromyography , Evoked Potentials, Somatosensory/physiology , Hemoglobins/metabolism , Male , Nasal Cavity/physiology , Oxyhemoglobins/metabolism , Somatosensory Cortex/physiology , SwineABSTRACT
The current study aimed to explore the neural substrate for methylphenidate effects on attentional control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS), which can be applied to young children with ADHD more easily than conventional neuroimaging modalities. Using fNIRS, we monitored the oxy-hemoglobin signal changes of 22 ADHD children (6 to 14 years old) performing an oddball task before and 1.5 h after methylphenidate or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Twenty-two age- and gender-matched normal controls without methylphenidate administration were also monitored. In the control subjects, the oddball task recruited the right prefrontal and inferior parietal cortices, and this activation was absent in premedicated ADHD children. The reduced right prefrontal activation was normalized after methylphenidate but not placebo administration in ADHD children. These results are consistent with the neuropharmacological effects of methylphenidate to upregulate the dopamine system in the prefrontal cortex innervating from the ventral tegmentum (mesocortical pathway), but not the noradrenergic system from the parietal cortex to the locus coeruleus. Thus, right prefrontal activation would serve as an objective neurofunctional biomarker to indicate the effectiveness of methylphenidate on ADHD children in attentional control. fNIRS monitoring enhances early clinical diagnosis and the treatment of ADHD children, especially those with an inattention phenotype.
ABSTRACT
The object of the current study is to explore the neural substrate for effects of atomoxetine (ATX) on inhibitory control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS). We monitored the oxy-hemoglobin signal changes of sixteen ADHD children (6-14 years old) performing a go/no-go task before and 1.5 h after ATX or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Sixteen age- and gender-matched normal controls without ATX administration were also monitored. In the control subjects, the go/no-go task recruited the right inferior and middle prefrontal gyri (IFG/MFG), and this activation was absent in pre-medicated ADHD children. The reduction of right IFG/MFG activation was acutely normalized after ATX administration but not placebo administration in ADHD children. These results are reminiscent of the neuropharmacological effects of methylphenidate to up-regulate reduced right IFG/MFG function in ADHD children during inhibitory tasks. As with methylphenidate, activation in the IFG/MFG could serve as an objective neuro-functional biomarker to indicate the effects of ATX on inhibitory control in ADHD children. This promising technique will enhance early clinical diagnosis and treatment of ADHD in children, especially in those with a hyperactivity/impulsivity phenotype.
Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Brain/drug effects , Executive Function/drug effects , Propylamines/pharmacology , Propylamines/therapeutic use , Adolescent , Atomoxetine Hydrochloride , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/metabolism , Child , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Spectroscopy, Near-InfraredABSTRACT
The current study aimed to explore the neural substrate for atomoxetine effects on attentional control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS), which can be applied to young children with ADHD more easily than conventional neuroimaging modalities. Using fNIRS, we monitored the oxy-hemoglobin signal changes of 15 ADHD children (6 to 14 years old) performing an oddball task before and 1.5 h after atomoxetine or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Fifteen age-, gender-, and intelligence quotient-matched normal controls without atomoxetine administration were also monitored. In the control subjects, the oddball task recruited the right prefrontal and inferior parietal cortices. The right prefrontal and parietal activation was normalized after atomoxetine administration in ADHD children. This was in contrast to our previous study using a similar protocol showing methylphenidate-induced normalization of only the right prefrontal function. fNIRS allows the detection of differential neuropharmacological profiles of both substances in the attentional network: the neuropharmacological effects of atomoxetine to upregulate the noradrenergic system reflected in the right prefrontal and inferior parietal activations and those of methylphenidate to upregulate the dopamine system reflected in the prefrontal cortex activation.