Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Pathol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837231

ABSTRACT

The Ppy gene encodes pancreatic polypeptide (PP) secreted by PP- or γ-cells, which are a subtype of endocrine cells localised mainly in the islet periphery. For a detailed characterisation of PP cells, we aimed to establish PP cell lines. To this end, we generated a mouse model harbouring the SV40 large T antigen (TAg) in the Rosa26 locus, which is expressed upon Ppy-promoter-mediated Cre-loxP recombination. Whereas Insulin1-CreERT-mediated TAg expression in beta cells resulted in insulinoma, surprisingly, Ppy-Cre-mediated TAg expression resulted in the malignant transformation of Ppy-lineage cells. These mice showed distorted islet structural integrity at 5 days of age compared with normal islets. CK19+ duct-like lesions contiguous with the islets were observed at 2 weeks of age, and mice developed aggressive pancreatic ductal adenocarcinoma (PDAC) at 4 weeks of age, suggesting that PDAC can originate from the islet/endocrine pancreas. This was unexpected as PDAC is believed to originate from the exocrine pancreas. RNA-sequencing analysis of Ppy-lineage islet cells from 7-day-old TAg+ mice showed a downregulation and an upregulation of endocrine and exocrine genes, respectively, in addition to the upregulation of genes and pathways associated with PDAC. These results suggest that the expression of an oncogene in Ppy-lineage cells induces a switch from endocrine cell fate to PDAC. Our findings demonstrate that Ppy-lineage cells may be an origin of PDAC and may provide novel insights into the pathogenesis of pancreatic cancer, as well as possible therapeutic strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

2.
Sci Rep ; 13(1): 3484, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922503

ABSTRACT

Metal homeostasis is tightly regulated in cells and organisms, and its disturbance is frequently observed in some diseases such as neurodegenerative diseases and metabolic disorders. Previous studies suggest that zinc and iron are necessary for the normal functions of pancreatic ß cells. However, the distribution of elements in normal conditions and the pathophysiological significance of dysregulated elements in the islet in diabetic conditions have remained unclear. In this study, to investigate the dynamics of elements in the pancreatic islets of a diabetic mouse model expressing human islet amyloid polypeptide (hIAPP): hIAPP transgenic (hIAPP-Tg) mice, we performed imaging analysis of elements using synchrotron scanning X-ray fluorescence microscopy and quantitative analysis of elements using inductively coupled plasma mass spectrometry. We found that in the islets, zinc significantly decreased in the early stage of diabetes, while iron gradually decreased concurrently with the increase in blood glucose levels of hIAPP-Tg mice. Notably, when zinc and/or iron were decreased in the islets of hIAPP-Tg mice, dysregulation of glucose-stimulated mitochondrial respiration was observed. Our findings may contribute to clarifying the roles of zinc and iron in islet functions under pathophysiological diabetic conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Mice , Animals , Islet Amyloid Polypeptide/metabolism , Zinc/metabolism , Iron/metabolism , Mice, Transgenic , Amyloid/metabolism , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Diabetes Mellitus, Type 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL