Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Int J Infect Dis ; 71: 82-88, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29702266

ABSTRACT

BACKGROUND: Mycobacterium yongonense is a recently described novel species belonging to Mycobacterium avium complex, which is the most prevalent aetiology of non-tuberculous mycobacteria associated with pulmonary infections, and poses tuberculosis diagnostic challenges in high-burden, resource-constrained settings. METHODS: Whole genome shotgun sequencing and comparative microbial genomic analyses were used to characterize the isolate from a patient diagnosed with multidrug-resistant tuberculosis (MDR-TB) after relapse. RESULTS: The genome sequence of the first case of M. yongonense (M. yongonense RT 955-2015) in Tanzania is presented. Sequence analysis revealed that the RT 955-2015 strain had a high similarity to M. yongonense 05-1390(T) (98.74%) and Mycobacterium chimaera DSM 44623(T) (98%). Its 16S rRNA showed similarity to Mycobacterium paraintracellulare KCTC 290849(T) (100%), Mycobacterium intracellulare ATCC 13950(T) (100%), M. chimaera DSM 44623(T) (99.9%), and M. yongonense 05-1390(T) (98%). The strain exhibited a substantially different rpoB sequence to that of M. yongonense 05-1390 (95.16%), but closely related to that of M. chimaera DSM 44623(T) (99.86%), M. intracellulare ATCC 13950(T), (99.53%), and M. paraintracellulare KCTC 290849(T) (99.53%). CONCLUSIONS: In light of the OrthoANI algorithm and phylogenetic analysis, it was concluded that the isolate was M. yongonense Type II genotype, which is an indication that the patient was misdiagnosed with TB/MDR-TB and received inappropriate treatment.


Subject(s)
Mycobacterium avium Complex/isolation & purification , Tuberculosis, Multidrug-Resistant/microbiology , Diagnostic Errors , Genotype , Humans , Male , Middle Aged , Mycobacterium avium Complex/classification , Mycobacterium avium Complex/genetics , Phylogeny , Tanzania , Tuberculosis, Multidrug-Resistant/diagnosis , Whole Genome Sequencing
2.
BMC Res Notes ; 11(1): 121, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29426372

ABSTRACT

OBJECTIVE: The gap between patients diagnosed with multi-drug resistant tuberculosis (MDR-TB) and enrolment in treatment is one of the major challenges in tuberculosis control programmes. A 4-year (2013-2016) retrospective review of patients' clinical data and subsequent in-depth interviews with health providers were conducted to assess the effectiveness of the GeneXpert GxAlert platform for MDR-TB diagnosis and its impact on linkage of patients to care in Tanzania. RESULTS: A total of 782 new rifampicin resistant cases were notified, but only 242 (32.3%) were placed in an MDR-TB regimens. The remaining 540 (67.07%) patients were not on treatment, of which 103 patients had complete records on the GxAlert database. Of the 103 patients: 39 were judged as untraceable; 27 died before treatment; 12 were treated with first-line anti-TBs; 9 repeat tests did not show rifampicin resistance; 15 were not on treatment due to communication breakdown, and 1 patient was transferred outside the country. In-depth interviews with health providers suggested that the pre-treatment loss for the MDR-TB patients was primarily attributed to health system and patients themselves. We recommend strengthening the health system by developing and implementing well-defined interventions to ensure all diagnosed MDR-TB patients are accurately reported and timely linked to treatment.


Subject(s)
Antibiotics, Antitubercular , Drug Resistance, Multiple, Bacterial , Rifampin , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/therapy , Adult , Humans , Patient Acceptance of Health Care , Patient Navigation , Tanzania
3.
Int J Gen Med ; 10: 199-205, 2017.
Article in English | MEDLINE | ID: mdl-28744153

ABSTRACT

Diagnosis of pulmonary tuberculosis (TB) in technology-limited countries is widely achieved by smear microscopy, which has limited sensitivity and specificity. The frequency and clinical implication of smear-positive but culture-negative among presumptive TB patients remains unclear. A cross-sectional substudy was conducted which aimed to identify the proportion of nontuberculous mycobacteria (NTM) infections among 94 "smear-positive culture-negative" patients diagnosed between January 2013 and June 2016 in selected health facilities in Tanzania. Out of 94 sputa, 25 (26.60%) were GeneXpert® mycobacteria TB positive and 11/94 (11.70%) repeat-culture positive; 5 were Capilia TB-Neo positive and confirmed by GenoType MTBC to be Mycobacterium tuberculosis/Mycobacterium canettii. The remaining 6 Capilia TB-Neo negative samples were genotyped by GenoType® CM/AS, identifying 3 (3.19%) NTM, 2 Gram positive bacteria, and 1 isolate testing negative, together, making a total of 6/94 (6.38%) confirmed false smear-positives. Twenty-eight (29.79%) were confirmed TB cases, while 60 (63.83%) remained unconfirmed cases. Out of 6 (6.38%) patients who were HIV positive, 2 patients were possibly coinfected with mycobacteria. The isolation of NTM and other bacteria among smear-positive culture-negative samples and the presence of over two third of unconfirmed TB cases emphasize the need of both advanced differential TB diagnostic techniques and good clinical laboratory practices to avoid unnecessary administration of anti-TB drugs.

SELECTION OF CITATIONS
SEARCH DETAIL