Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Chem Biol Drug Des ; 103(6): e14566, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858134

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic has triggered a significant impact on global public health security, it is urgent to develop effective antiviral drugs. Previous studies have found that binding to ACE2 is a key step in the invasion of SARS-CoV-2 into host cells, so virus invasion can be inhibited by blocking ACE2, but there are few reports on this kind of specific inhibitor. Our previous study found that Harringtonine (HT) can inhibit the entry of SARS-CoV-2 spike pseudovirus into ACE2h cells, but its relatively high cytotoxicity limits its further development. Amino acid modification of the active components can increase their solubility and reduce their cytotoxicity. Therefore, in this study, seven new derivatives were synthesized by amino acid modification of its core structure Cephalotaxine. The target compounds were evaluated by cell viability assay and the SARS-CoV-2 spike pseudovirus entry assay. Compound CET-1 significantly inhibited the entry of pseudovirus into ACE2h cells and showed less cytotoxicity than HT. Molecular docking results showed that CET-1 could bind TYR83, an important residue of ACE2, just like HT. In conclusion, our study provided a novel compound with more potential activity and lower toxicity than HT on inhibiting the SARS-CoV-2 spike pseudovirus infection, which makes it possible to be a lead compound as an antiviral drug in the future.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , Homoharringtonine , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Amino Acids/chemistry , Amino Acids/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Cell Survival/drug effects , COVID-19/virology , Homoharringtonine/pharmacology , Homoharringtonine/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization/drug effects , Harringtonines/chemistry , Harringtonines/pharmacology
2.
PLoS One ; 8(7): e71464, 2013.
Article in English | MEDLINE | ID: mdl-23936268

ABSTRACT

Tropical rainforests in Southeast Asia are facing increasing and ever more intense human disturbance that often negatively affects biodiversity. The aim of this study was to determine how tree species phylogenetic diversity is affected by traditional forest management types and to understand the change in community phylogenetic structure during succession. Four types of forests with different management histories were selected for this purpose: old growth forests, understorey planted old growth forests, old secondary forests (∼200-years after slash and burn), and young secondary forests (15-50-years after slash and burn). We found that tree phylogenetic community structure changed from clustering to over-dispersion from early to late successional forests and finally became random in old-growth forest. We also found that the phylogenetic structure of the tree overstorey and understorey responded differentially to change in environmental conditions during succession. In addition, we show that slash and burn agriculture (swidden cultivation) can increase landscape level plant community evolutionary information content.


Subject(s)
Agriculture/methods , Ecosystem , Phylogeny , Trees/growth & development , Algorithms , China , Cluster Analysis , Fires , Forestry/methods , Genetic Variation , Geography , Humans , Models, Genetic , Rain , Ribulose-Bisphosphate Carboxylase/genetics , Species Specificity , Trees/classification , Trees/genetics
SELECTION OF CITATIONS
SEARCH DETAIL