Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Clin Infect Dis ; 76(3): e60-e70, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35959897

ABSTRACT

BACKGROUND: The burden and duration of persistent symptoms after nonsevere coronavirus disease 2019 (COVID-19) remains uncertain. This study aimed to assess postinfection symptom trajectories in home-isolated COVID-19 cases compared with age- and time- matched seronegative controls, and investigate immunological correlates of long COVID. METHODS: A prospective case-control study included home-isolated COVID-19 cases between February 28 and April 4, 2020, and followed for 12 (n = 233) to 18 (n = 149) months, and 189 age-matched severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-naive controls. We collected clinical data at baseline, 6, 12, and 18 months postinfection, and blood samples at 2, 4, 6, and 12 months for analysis of SARS-CoV-2-specific humoral and cellular responses. RESULTS: Overall, 46% (108/233) had persisting symptoms 12 months after COVID-19. Compared with controls, adult cases had a high risk of fatigue (27% excess risk, sex, and comorbidity adjusted odds ratio [aOR] 5.86; 95% confidence interval [CI], 3.27-10.5), memory problems (21% excess risk; aOR 7.42; CI, 3.51-15.67), concentration problems (20% excess risk; aOR 8.88; 95% CI, 3.88-20.35), and dyspnea (10% excess risk; aOR 2.66; 95% CI, 1.22-5.79). The prevalence of memory problems increased overall from 6 to 18 months (excess risk 11.5%; 95% CI, 1.5-21.5; P = .024) and among women (excess risk 18.7%; 95% CI, 4.4-32.9; P = .010). Longitudinal spike immunoglobulin G was significantly associated with dyspnea at 12 months. The spike-specific clonal CD4+ T-cell receptor ß depth was significantly associated with both dyspnea and number of symptoms at 12 months. CONCLUSIONS: This study documents a high burden of persisting symptoms after mild COVID-19 and suggests that infection induced SARS-CoV-2-specific immune responses may influence long-term symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Female , Humans , Post-Acute COVID-19 Syndrome , Case-Control Studies , Dyspnea , Memory Disorders
2.
J Infect Dis ; 226(1): 97-108, 2022 08 12.
Article in English | MEDLINE | ID: mdl-33151320

ABSTRACT

BACKGROUND: Influenza is difficult to distinguish clinically from other acute respiratory infections. Rapid laboratory diagnosis can help initiate early effective antiviral treatment and isolation. Implementing a novel point-of-care test (POCT) for influenza in the emergency department (ED) could improve treatment and isolation strategies and reduce the length of stay (LOS). METHODS: In a prospective, controlled observational cohort study, we enrolled patients admitted due to acute respiratory illness to 2 public hospitals in Bergen, Norway, one using a rapid POCT for influenza (n = 400), the other (n = 167) using conventional rapid laboratory-based assay. RESULTS: Prevalence of influenza was similar in the 2 hospitals (154/400, 38% vs 38%, 63/167; P = .863). Most patients in both hospitals received antiviral (83% vs 81%; P = .703) and antibiotic treatment (72% vs 62%; P = .149). Isolation was more often initiated in ED in the hospital using POCT (91% vs 80%; P = .025). Diagnosis by POCT was associated with shorter hospital stay; old age, diabetes, cancer, and use of antibiotics, particularly broad-spectrum antibiotics, were associated with prolonged stay. CONCLUSIONS: POCT implementation in ED resulted in improved targeted isolation and shorter LOS. Regardless of POCT use, most influenza patients received antivirals (>80%) and antibiotics (>69%).


Subject(s)
Influenza, Human , Adult , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Emergency Service, Hospital , Humans , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Length of Stay , Point-of-Care Systems , Point-of-Care Testing , Prospective Studies
3.
J Infect Dis ; 223(4): 589-599, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33247924

ABSTRACT

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, many countries experienced infection in health care workers (HCW) due to overburdened health care systems. Whether infected HCW acquire protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. METHODS: In a Norwegian prospective cohort study, we enrolled 607 HCW before and after the first COVID-19 wave. Exposure history, COVID-19-like symptoms, and serum samples were collected. SARS-CoV-2-specific antibodies were characterized by spike-protein IgG/IgM/IgA enzyme-linked immunosorbent and live-virus neutralization assays. RESULTS: Spike-specific IgG/IgM/IgA antibodies increased after the first wave in HCW with, but not in HCW without, COVID-19 patient exposure. Thirty-two HCW (5.3%) had spike-specific antibodies (11 seroconverted with ≥4-fold increase, 21 were seropositive at baseline). Neutralizing antibodies were found in 11 HCW that seroconverted, of whom 4 (36.4%) were asymptomatic. Ninety-seven HCW were tested by reverse transcriptase polymerase chain reaction (RT-PCR) during follow-up; 8 were positive (7 seroconverted, 1 had undetectable antibodies). CONCLUSIONS: We found increases in SARS-CoV-2 neutralizing antibodies in infected HCW, especially after COVID-19 patient exposure. Our data show a low number of SARS-CoV-2-seropositive HCW in a low-prevalence setting; however, the proportion of seropositivity was higher than RT-PCR positivity, highlighting the importance of antibody testing.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , Aged , Asymptomatic Infections , Female , Humans , Male , Middle Aged , Norway , Prospective Studies , Seroconversion , Spike Glycoprotein, Coronavirus/immunology , Young Adult
4.
Scand J Immunol ; 94(2): e13045, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33891354

ABSTRACT

There is limited knowledge of influenza-specific immune responses and their kinetics in critically ill patients. We investigated humoral and cellular immune responses after critical influenza A/H1N1 infection and hypothesized that dysfunctionality or absence of immune responses could contribute to more severe illness. We followed 12 patients hospitalized with severe influenza infection; the majority admitted to intensive care unit (ICU). Blood samples were collected at days 10 and 19 and at 5 months. Antibody responses to surface glycoproteins haemagglutinin (HA) and neuraminidase (NA) of A/H1N1pdm09 were quantified by haemagglutination inhibition (HAI), microneutralization (MN), Enzyme-linked immunosorbent assay (ELISA) and Enzyme-linked lectin assay (ELLA). Influenza-specific antibody levels and avidity were measured separately for head and stalk domains of H1. Cytokine secreting CD4+ and CD8+ T cell responses to conserved influenza epitopes (M1, NP and PB1) were analysed by FluoroSpot. Overall, the patients retained a high level of functional HA- and NA-specific antibodies over the study period. During the acute phase (up to 3 weeks from symptom onset), antibodies specific to H1 stalk increased earlier and were present in higher amount compared with H1 head-specific antibodies. The NA-specific antibodies and the non-neutralizing HA-specific antibody response for H1 head and H1 full-length showed a significant decline from acute to convalescent phase. Despite high total IgG concentrations, avidity to H1 head and H1 full-length protein remained low at all time points. Similarly, CD8+ T cell responses were continuously measured at low levels. In conclusion, our study found that critically ill patients were characterized by low HA-specific antibody avidity and CD8+ T cell response.


Subject(s)
Immunity, Cellular/immunology , Immunity, Humoral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Adult , Aged , Antibodies, Viral/immunology , Antibody Formation/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Critical Illness , Female , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Male , Middle Aged
5.
J Infect Dis ; 221(1): 21-32, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31250024

ABSTRACT

BACKGROUND: Influenza remains a major threat to public health. Live-attenuated influenza vaccines (LAIV) have been shown to be effective, particularly in children. Follicular T helper (TFH) cells provide B-cell help and are crucial for generating long-term humoral immunity. However the role of TFH cells in LAIV-induced immune responses is unknown. METHODS: We collected tonsils, plasma, and saliva samples from children and adults receiving LAIV prior to tonsillectomy. We measured influenza-specific TFH-cell responses after LAIV by flow cytometry and immunohistochemistry. Systemic and local antibody responses were analysed by hemagglutination inhibition assay and enzyme-linked immunosorbent assay. RESULTS: We report that LAIV induced early (3-7 days post-vaccination) activation of tonsillar follicles and influenza-specific TFH-cell (CXCR5+CD57+CD4+ T cell) responses in children, and to a lesser extent in adults. Serological analyses showed that LAIV elicited rapid (day 14) and long-term (up to 1 year post-vaccination) antibody responses (hemagglutination inhibition, influenza-specific IgG) in children, but not adults. There was an inverse correlation between pre-existing influenza-specific salivary IgA concentrations and tonsillar TFH-cell responses, and a positive correlation between tonsillar TFH-cell and systemic IgG induction after LAIV. CONCLUSIONS: Our data, taken together, demonstrate an important role of tonsillar TFH cells in LAIV-induced immunity in humans.


Subject(s)
Antibodies, Viral/blood , Immunogenicity, Vaccine , Influenza Vaccines/immunology , Palatine Tonsil/immunology , Saliva/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adolescent , Adult , Age Factors , Child , Child, Preschool , Humans , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Influenza B virus/immunology , Middle Aged , Palatine Tonsil/cytology , Time Factors , Vaccination , Vaccines, Attenuated , Young Adult
6.
Scand J Immunol ; 90(4): e12801, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31269273

ABSTRACT

Influenza virus is a major respiratory pathogen, and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA) play important roles in limiting virus infection. The objective of this study was to dissect the influenza-specific antibody responses in children and adults, and T cell responses in children induced after LAIV immunization to the A/H1N1 virus. Blood samples were collected pre- and at 28 and 56 days post-vaccination from 20 children and 20 adults. No increase in micro-neutralization (MN) antibodies against A/H1N1 was observed after vaccination. A/H1N1 stalk-specific neutralizing and NA-inhibiting (NI) antibodies were boosted in children after LAIV. Interferon γ-producing T cells increased significantly in children, and antibody-dependent cellular-mediated cytotoxic (ADCC) cell activity increased slightly in children after vaccination, although this change was not significant. The results indicate that the NI assay is more sensitive to qualitative changes in serum antibodies after LAIV. There was a considerable difference in the immune response in children and adults after vaccination, which may be related to priming and previous influenza history. Our findings warrant further studies for evaluating LAIV vaccination immunogenicity.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , Vaccines, Attenuated/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Child , Female , Hemagglutination Inhibition Tests , Humans , Immunity, Humoral , Male , Vaccination
7.
J Infect Dis ; 215(10): 1527-1535, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28368530

ABSTRACT

Background: Live attenuated influenza vaccines (LAIVs) stimulate a multifaceted immune response including cellular immunity, which may provide protection against newly emerging strains. This study shows proof of concept that LAIVs boost preexisting, cross-reactive T cells in children to genetically diverse influenza A virus (IAV) strains to which the children had not been exposed. Methods: We studied the long-term cross-reactive T-cell response in 14 trivalent LAIV-vaccinated children using the fluorescent immunospot assay (FluoroSpot) with heterologous H1N1 and H3N2 IAVs and CD8+ peptides from the internal proteins (matrix protein 1 [M1], nucleoprotein [NP], polymerase basic protein 1 [PB1]). Serum antibody responses were determined by means of hemagglutination inhibition assay. Blood samples were collected before vaccination and up to 1 year after vaccination. Results: Preexisting cross-reactive T cells to genetically diverse IAV strains were found in the majority of the children, which were further boosted in 50% of them after receipt of LAIV. Further analyses of these T cells showed significant increases in CD8+ T cells, mainly dominated by NP-specific responses. After vaccination with LAIV, the youngest children showed the highest increase in T-cell responses. Conclusion: LAIV boosts durable, cross-reactive T-cell responses in children and may have a clinically protective effect at the population level. LAIV may be a first step toward the desired universal influenza vaccine.


Subject(s)
Cross Protection/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , T-Lymphocytes/immunology , Vaccines, Attenuated/immunology , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Child , Child, Preschool , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/immunology
8.
J Infect Dis ; 211(10): 1541-9, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25425696

ABSTRACT

BACKGROUND: The live attenuated influenza vaccine (LAIV) is the preferred vaccine for children, but the mechanisms behind protective immune responses are unclear, and the duration of immunity remains to be elucidated. This study reports on the longevity of B-cell and T-cell responses elicited by the LAIV. METHODS: Thirty-eight children (3-17 years old) were administered seasonal LAIV. Blood samples were collected before vaccination with sequential sampling up to 1 year after vaccination. Humoral responses were evaluated by a hemagglutination inhibition assay, and memory B-cell responses were evaluated by an enzyme-linked immunosorbent spot assay (ELISpot). T-cell responses were evaluated by interferon γ (IFN-γ) ELISpot analysis, and intracellular cytokine staining of CD4(+) T cells for detection of IFN-γ, interleukin 2, and tumor necrosis factor α was performed using flow cytometry. RESULTS: LAIV induced significant increases in B-cell and T-cell responses, which were sustained at least 1 year after vaccination. Strain variations were observed, in which the B strain elicited stronger responses. IFN-γ-expressing T cell counts increased significantly, and remained higher than prevaccination levels 1 year later. Expression of T-helper type 1 intracellular cytokines (interleukin 2, IFN-γ, and tumor necrosis factor α) increased after 1 dose and were boosted after the second dose. Hemagglutination inhibition titers were sustained for 1 year. Vaccine-induced memory B cell counts were significantly increased, and the response persisted for one year. CONCLUSIONS: LAIV elicited B-cell and T-cell responses that persisted for at least 1 year in children. This is a novel finding that will aid future vaccine policy.


Subject(s)
B-Lymphocytes/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , T-Lymphocytes/immunology , Adolescent , Antibodies, Viral/blood , Child , Child, Preschool , Cytokines/biosynthesis , Enzyme-Linked Immunospot Assay , Female , Flow Cytometry , Hemagglutination Inhibition Tests , Humans , Longitudinal Studies , Male , Staining and Labeling , Time Factors , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
9.
Front Immunol ; 14: 1287388, 2023.
Article in English | MEDLINE | ID: mdl-38022529

ABSTRACT

Obesity is a known risk factor for severe respiratory tract infections. In this prospective study, we assessed the impact of being obese or overweight on longitudinal SARS-CoV-2 humoral and cellular responses up to 18 months after infection. 274 patients provided blood samples at regular time intervals up to 18 months including obese (BMI ≥30, n=32), overweight (BMI 25-29.9, n=103) and normal body weight (BMI 18.5-24.9, n=134) SARS-CoV-2 patients. We determined SARS-CoV-2 spike-specific IgG, IgA, IgM levels by ELISA and neutralising antibody titres by neutralisation assay. RBD- and spike-specific memory B cells were investigated by ELISpot, spike- and non-spike-specific IFN-γ, IL-2 and IFN-γ/IL-2 secreting T cells by FluoroSpot and T cell receptor (TCR) sequencing was performed. Higher BMI correlated with increased COVID-19 severity. Humoral and cellular responses were stronger in overweight and obese patients than normal weight patients and associated with higher spike-specific IgG binding titres relative to neutralising antibody titres. Linear regression models demonstrated that BMI, age and COVID-19 severity correlated independently with higher SARS-CoV-2 immune responses. We found an increased proportion of unique SARS-CoV-2 specific T cell clonotypes after infection in overweight and obese patients. COVID-19 vaccination boosted humoral and cellular responses irrespective of BMI, although stronger immune boosting was observed in normal weight patients. Overall, our results highlight more severe disease and an over-reactivity of the immune system in overweight and obese patients after SARS-CoV-2 infection, underscoring the importance of recognizing overweight/obese individuals as a risk group for prioritisation for COVID-19 vaccination.


Subject(s)
COVID-19 , Overweight , Humans , SARS-CoV-2 , COVID-19 Vaccines , Interleukin-2 , Prospective Studies , Obesity/complications , Immunoglobulin G , Antibodies, Viral , Enzyme-Linked Immunospot Assay , Immunity , Antibodies, Neutralizing
10.
Front Public Health ; 11: 1164326, 2023.
Article in English | MEDLINE | ID: mdl-37546332

ABSTRACT

Background: Preventing infection in healthcare workers (HCWs) is crucial for protecting healthcare systems during the COVID-19 pandemic. Here, we investigated the seroepidemiology of SARS-CoV-2 in HCWs in Norway with low-transmission settings. Methods: From March 2020, we recruited HCWs at four medical centres. We determined infection by SARS-CoV-2 RT-PCR and serological testing and evaluated the association between infection and exposure variables, comparing our findings with global data in a meta-analysis. Anti-spike IgG antibodies were measured after infection and/or vaccination in a longitudinal cohort until June 2021. Results: We identified a prevalence of 10.5% (95% confidence interval, CI: 8.8-12.3) in 2020 and an incidence rate of 15.0 cases per 100 person-years (95% CI: 12.5-17.8) among 1,214 HCWs with 848 person-years of follow-up time. Following infection, HCWs (n = 63) mounted durable anti-spike IgG antibodies with a half-life of 4.3 months since their seropositivity. HCWs infected with SARS-CoV-2 in 2020 (n = 46) had higher anti-spike IgG titres than naive HCWs (n = 186) throughout the 5 months after vaccination with BNT162b2 and/or ChAdOx1-S COVID-19 vaccines in 2021. In a meta-analysis including 20 studies, the odds ratio (OR) for SARS-CoV-2 seropositivity was significantly higher with household contact (OR 12.6; 95% CI: 4.5-35.1) and occupational exposure (OR 2.2; 95% CI: 1.4-3.2). Conclusion: We found high and modest risks of SARS-CoV-2 infection with household and occupational exposure, respectively, in HCWs, suggesting the need to strengthen infection prevention strategies within households and medical centres. Infection generated long-lasting antibodies in most HCWs; therefore, we support delaying COVID-19 vaccination in primed HCWs, prioritising the non-infected high-risk HCWs amid vaccine shortage.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Antibody Formation , COVID-19 Vaccines , BNT162 Vaccine , Pandemics , Seroepidemiologic Studies , Risk Assessment , ChAdOx1 nCoV-19 , Health Personnel , Immunoglobulin G
11.
Vaccine X ; 13: 100262, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36643855

ABSTRACT

Objectives: Elderly are an understudied, high-risk group vulnerable to severe COVID-19. We comprehensively analyzed the durability of humoral and cellular immune responses after BNT162b2 vaccination and SARS-CoV-2 infection in elderly and younger adults. Methods: Home-dwelling old (n = 100, median 86 years) and younger adults (n = 449, median 38 years) were vaccinated with two doses of BNT162b2 vaccine at 3-week intervals and followed for 9-months. Vaccine-induced responses were compared to home-isolated COVID-19 patients (n = 183, median 47 years). Our analysis included neutralizing antibodies, spike-specific IgG, memory B-cells, IFN-γ and IL-2 secreting T-cells and sequencing of the T-cell receptor (TCR) repertoire. Results: Spike-specific breadth and depth of the CD4+ and CD8+ TCR repertoires were significantly lower in the elderly after one and two vaccinations. Both vaccinations boosted IFN-γ and IL-2 secreting spike-specific T-cells responses, with 96 % of the elderly and 100 % of the younger adults responding after the second dose, although responses were not maintained at 9-months. In contrast, T-cell responses persisted up to 12-months in infected patients. Spike-specific memory B-cells were induced after the first dose in 87 % of the younger adults compared to 38 % of the elderly, which increased to 83 % after the second dose. Memory B-cells were maintained at 9-months post-vaccination in both vaccination groups. Neutralizing antibody titers were estimated to last for 1-year in younger adults but only 6-months in the older vaccinees. Interestingly, infected older patients (n = 15, median 75 years) had more durable neutralizing titers estimated to last 14-months, 8-months longer than the older vaccinees. Conclusions: Vaccine-induced spike-specific IgG and neutralizing antibodies were consistently lower in the older than younger vaccinees. Overall, our data provide valuable insights into the kinetics of the humoral and cellular immune response in the elderly after SARS-CoV-2 vaccination or infection, highlighting the need for two doses, which can guide future vaccine design.Clinical trials.gov; NCT04706390.

12.
NPJ Vaccines ; 7(1): 67, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35750781

ABSTRACT

History of influenza A/H3N2 exposure, especially childhood infection, shape antibody responses after influenza vaccination and infection, but have not been extensively studied. We investigated the breadth and durability of influenza A/H3N2-specific hemagglutinin-inhibition antibodies after live-attenuated influenza vaccine in children (aged 3-17 years, n = 42), and after inactivated influenza vaccine or infection in adults (aged 22-61 years, n = 42) using 14 antigenically distinct A/H3N2 viruses circulating from 1968 to 2018. We found that vaccination and infection elicited cross-reactive antibody responses, predominantly directed against newer or future strains. Childhood H3-priming increased the breadth and magnitude of back-boosted A/H3N2-specific antibodies in adults. Broader and more durable A/H3N2-specific antibodies were observed in repeatedly vaccinated adults than in children and previously unvaccinated adults. Our findings suggest that early A/H3N2 exposure and frequent seasonal vaccination could increase the breadth and seropositivity of antibody responses, which may improve vaccine protection against future viruses.

13.
Infect Dis (Lond) ; 54(2): 79-89, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34525895

ABSTRACT

BACKGROUND: COVID-19 patients are extensively treated with antibiotics despite few bacterial complications. We aimed to study antibiotic use in hospitalized COVID-19 patients compared to influenza patients in two consecutive years. Furthermore, we investigated changes in antibiotic use from the first to second pandemic wave. METHODS: This prospective study included both patients from two referral hospitals in Bergen, Norway, admitted with influenza (n = 215) during the 2018/2019 epidemic and with COVID-19 (n = 82) during spring/summer 2020, and national data on registered Norwegian COVID-19 hospital admissions from March 2020 to January 2021 (n = 2300). Patient characteristics were compared, and logistic regression analysis was used to identify risk factors for antibiotic use. RESULTS: National and local COVID-19 patients received significantly less antibiotics (53% and 49%) than influenza patients (69%, p < .001). Early antibiotics contributed to >90% of antibiotic prescriptions in the two local hospitals, and >70% of prescriptions nationally. When adjusted for age, comorbidities, symptom duration, chest X-ray infiltrates and oxygen treatment, local COVID-19 patients still had significantly lower odds of antibiotic prescription than influenza patients (aOR 0.21, 95%CI 0.09-0.50). At the national level, we observed a significant reduction in antibiotic prescription rates in the second pandemic wave compared to the first (aOR 0.35, 95% CI 0.29-0.43). CONCLUSION: Fewer COVID-19 patients received antibiotics compared to influenza patients admitted to the two local hospitals one year earlier. The antibiotic prescription rate was lower during the second pandemic wave, possibly due to increased clinical experience and published evidence refuting the efficacy of antibiotics in treating COVID-19 pneumonia.


Subject(s)
COVID-19 , Influenza, Human , Anti-Bacterial Agents/therapeutic use , Drug Prescriptions , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Prospective Studies , SARS-CoV-2
14.
PLoS One ; 17(2): e0261979, 2022.
Article in English | MEDLINE | ID: mdl-35192617

ABSTRACT

BACKGROUND: Neutralizing antibodies are important for protection against the pandemic SARS-CoV-2 virus, and long-term memory responses determine the risk of re-infection or boosting after vaccination. T-cellular responses are considered important for partial protection against novel variants of concern. METHODS: A prospective cohort of hospitalized (n = 14) and community (n = 38) patients with rt-PCR confirmed SARS-CoV-2 infection were recruited. Blood samples and clinical data were collected when diagnosed and at 6 months. Serum samples were analyzed for SARS-CoV-2-spike specific antibodies using ELISA (IgG, IgA, IgM), pseudotype neutralization and microneutralization assays. Peripheral blood mononuclear cells were investigated for virus-specific T-cell responses in the interferon-γ and interleukin-2 fluorescent-linked immunosorbent spot (FluroSpot) assay. RESULTS: We found durable SARS-CoV-2 spike- and internal protein specific T-cellular responses in patients with persistent antibodies at 6 months. Significantly higher IL-2 and IFN-γ secreting T-cell responses as well as SARS-CoV-2 specific IgG and neutralizing antibodies were detected in hospitalized compared to community patients. The immune response was impacted by age, gender, comorbidity and severity of illness, reflecting clinical observations. CONCLUSIONS: SARS-CoV-2 specific T-cellular and antibody responses persisted for 6 months post confirmed infection. In previously infected patients, re-exposure or vaccination will boost long-term immunity, possibly providing protection against re-infection with variant viruses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Cellular , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Female , Follow-Up Studies , Hospitalization , Humans , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , Prospective Studies , Risk Factors
15.
Viruses ; 14(8)2022 08 11.
Article in English | MEDLINE | ID: mdl-36016378

ABSTRACT

Background: Persistent fever after SARS-CoV-2 infection in rituximab-treated patients has been reported. Due to reduced sensitivity in conventional sampling methods and unspecific symptoms in these patients, distinguishing between low-grade viral replication or hyperinflammation is challenging. Antiviral treatment is recommended as prophylactic or early treatment in the at-risk population; however, no defined treatment approaches for protracted SARS-CoV-2 infection exist. Results: We present a case of 96 days of persistent fever and SARS-CoV-2 infection in a patient receiving B cell depletion therapy for multiple sclerosis. Migratory lung infiltrates and positive PCR tests from serum (day-58 post infection) and lower airways (day-90 post infection) confirmed continuous viral replication. The dominant symptoms were continuous high fever, dyspnea and mild to moderate hypoxemia, which never developed into severe respiratory failure. The patient was hospitalized three times, with transient improvement after late antiviral treatment and full recovery 6 months post-rituximab infusion. Conclusions: A strategy for securing samples from lower airways and serum should be a prioritization to strengthen diagnostic certainty in immunocompromised patients. B-cell-deprived patients could benefit from late treatment with SARS-CoV-2-specific monoclonal antibodies and antivirals. Importantly, increased intervals between immunosuppressive therapy should be considered where feasible.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Antibodies, Viral , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19 Testing , Humans , Polymerase Chain Reaction , Rituximab/therapeutic use , SARS-CoV-2
16.
Commun Med (Lond) ; 2: 36, 2022.
Article in English | MEDLINE | ID: mdl-35603265

ABSTRACT

Background: Evaluation of susceptibility to emerging SARS-CoV-2 variants of concern (VOC) requires rapid screening tests for neutralising antibodies which provide protection. Methods: Firstly, we developed a receptor-binding domain-specific haemagglutination test (HAT) to Wuhan and VOC (alpha, beta, gamma and delta) and compared to pseudotype, microneutralisation and virus neutralisation assays in 835 convalescent sera. Secondly, we investigated the antibody response using the HAT after two doses of mRNA (BNT162b2) vaccination. Sera were collected at baseline, three weeks after the first and second vaccinations from older (80-99 years, n = 89) and younger adults (23-77 years, n = 310) and compared to convalescent sera from naturally infected individuals (1-89 years, n = 307). Results: Here we show that HAT antibodies highly correlated with neutralising antibodies (R = 0.72-0.88) in convalescent sera. Home-dwelling older individuals have significantly lower antibodies to the Wuhan strain after one and two doses of BNT162b2 vaccine than younger adult vaccinees and naturally infected individuals. Moverover, a second vaccine dose boosts and broadens the antibody repertoire to VOC in naïve, not previously infected older and younger adults. Most (72-76%) older adults respond after two vaccinations to alpha and delta, but only 58-62% to beta and gamma, compared to 96-97% of younger vaccinees and 68-76% of infected individuals. Previously infected older individuals have, similarly to younger adults, high antibody titres after one vaccination. Conclusions: Overall, HAT provides a surrogate marker for neutralising antibodies, which can be used as a simple inexpensive, rapid test. HAT can be rapidly adaptable to emerging VOC for large-scale evaluation of potentially decreasing vaccine effectiveness.

17.
Front Immunol ; 12: 744774, 2021.
Article in English | MEDLINE | ID: mdl-34691051

ABSTRACT

Annual influenza vaccination is often recommended for pregnant women and young children to reduce the risk of severe influenza. However, most studies investigating the safety, immunogenicity, and efficacy or effectiveness of influenza vaccines are conducted in healthy adults. In this evidence-based clinical review, we provide an update on the safety profile, immunogenicity, and efficacy/effectiveness of inactivated influenza vaccines (IIVs) in healthy pregnant women and children <5 years old. Six electronic databases were searched until May 27, 2021. We identified 3,731 articles, of which 93 met the eligibility criteria and were included. The IIVs were generally well tolerated in pregnant women and young children, with low frequencies of adverse events following IIV administration; however, continuous vaccine safety monitoring systems are necessary to detect rare adverse events. IIVs generated good antibody responses, and the seroprotection rates after IIVs were moderate to high in pregnant women (range = 65%-96%) and young children (range = 50%-100%), varying between the different influenza types/subtypes and seasons. Studies show vaccine efficacy/effectiveness values of 50%-70% in pregnant women and 20%-90% in young children against lab-confirmed influenza, although the efficacy/effectiveness depended on the study design, host factors, vaccine type, manufacturing practices, and the antigenic match/mismatch between the influenza vaccine strains and the circulating strains. Current evidence suggests that the benefits of IIVs far outweigh the potential risks and that IIVs should be recommended for pregnant women and young children.


Subject(s)
Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Vaccine Efficacy , Adult , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Pregnant Women
18.
Vaccines (Basel) ; 6(2)2018 May 26.
Article in English | MEDLINE | ID: mdl-29861454

ABSTRACT

The influenza virus is one of a few viruses that is capable of rendering an otherwise healthy person acutly bedridden for several days. This impressive knock-out effect, without prodromal symptoms, challenges our immune system. The influenza virus undergoes continuous mutations, escaping our pre-existing immunity and causing epidemics, and its segmented genome is subject to reassortment, resulting in novel viruses with pandemic potential. The personal and socieoeconomic burden from influenza is high. Vaccination is the most cost-effective countermeasure, with several vaccines that are available. The current limitations in vaccine effectivness, combined with the need for yearly updating of vaccine strains, is a driving force for research into developing new and improved influenza vaccines. The lack of public concern about influenza severity, and misleading information concerning vaccine safety contribute to low vaccination coverage even in high-risk groups. The success of future influeza vaccines will depend on an increased public awarness of the disease, and hence, the need for vaccination-aided through improved rapid diagnositics. The vaccines must be safe and broadly acting, with new, measurable correlates of protection and robust post-marketing safety studies, to improve the confidence in influenza vaccines.

19.
Hum Vaccin Immunother ; 14(3): 571-578, 2018 03 04.
Article in English | MEDLINE | ID: mdl-28933664

ABSTRACT

Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future "universal influenza vaccine". In this review we aim to cover the current understanding of the immune responses induced after LAIV.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Orthomyxoviridae Infections/immunology , Vaccines, Attenuated/immunology , Animals , Antibodies, Viral/immunology , Humans , Vaccination/methods , Vaccines, Inactivated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL