Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736301

ABSTRACT

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Subject(s)
COVID-19 , Mycobacterium , Child , Humans , Interferon-gamma , SARS-CoV-2 , Interferon-alpha , Interferon Regulatory Factor-1
2.
Cell ; 184(15): 4032-4047.e31, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34171309

ABSTRACT

Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.


Subject(s)
Neoplasms/genetics , Neoplasms/immunology , RNA Splicing/genetics , Animals , Antigen Presentation/drug effects , Antigen Presentation/immunology , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Epitopes/immunology , Ethylenediamines/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Hematopoiesis/drug effects , Hematopoiesis/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Inflammation/pathology , Mice, Inbred C57BL , Peptides/metabolism , Protein Isoforms/metabolism , Pyrroles/pharmacology , RNA Splicing/drug effects , Sulfonamides/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
3.
Cell ; 182(4): 1044-1061.e18, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32795414

ABSTRACT

There is an unmet clinical need for improved tissue and liquid biopsy tools for cancer detection. We investigated the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. Among traditional exosome markers, CD9, HSPA8, ALIX, and HSP90AB1 represent pan-EVP markers, while ACTB, MSN, and RAP1B are novel pan-EVP markers. To confirm that EVPs are ideal diagnostic tools, we analyzed proteomes of TE- (n = 151) and plasma-derived (n = 120) EVPs. Comparison of TE EVPs identified proteins (e.g., VCAN, TNC, and THBS2) that distinguish tumors from normal tissues with 90% sensitivity/94% specificity. Machine-learning classification of plasma-derived EVP cargo, including immunoglobulins, revealed 95% sensitivity/90% specificity in detecting cancer. Finally, we defined a panel of tumor-type-specific EVP proteins in TEs and plasma, which can classify tumors of unknown primary origin. Thus, EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type.


Subject(s)
Biomarkers, Tumor/metabolism , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Animals , Biomarkers, Tumor/blood , Cell Line , HSC70 Heat-Shock Proteins/metabolism , Humans , Machine Learning , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Neoplasms/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Sensitivity and Specificity , Tetraspanin 29/metabolism , rap GTP-Binding Proteins/metabolism
4.
Cell ; 165(6): 1416-1427, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27259150

ABSTRACT

Transfer RNAs (tRNAs) are primarily viewed as static contributors to gene expression. By developing a high-throughput tRNA profiling method, we find that specific tRNAs are upregulated in human breast cancer cells as they gain metastatic activity. Through loss-of-function, gain-of-function, and clinical-association studies, we implicate tRNAGluUUC and tRNAArgCCG as promoters of breast cancer metastasis. Upregulation of these tRNAs enhances stability and ribosome occupancy of transcripts enriched for their cognate codons. Specifically, tRNAGluUUC promotes metastatic progression by directly enhancing EXOSC2 expression and enhancing GRIPAP1-constituting an "inducible" pathway driven by a tRNA. The cellular proteomic shift toward a pro-metastatic state mirrors global tRNA shifts, allowing for cell-state and cell-type transgene expression optimization through codon content quantification. TRNA modulation represents a mechanism by which cells achieve altered expression of specific transcripts and proteins. TRNAs are thus dynamic regulators of gene expression and the tRNA codon landscape can causally and specifically impact disease progression.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , RNA, Transfer/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Codon , Disease Progression , Exosome Multienzyme Ribonuclease Complex/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Lung/pathology , Mice , Neoplasm Invasiveness/genetics , Neoplasm Micrometastasis/genetics , Neoplasm Proteins/biosynthesis , RNA-Binding Proteins/genetics , Regulatory Sequences, Ribonucleic Acid , Ribosomes/metabolism , Xenograft Model Antitumor Assays
5.
Cell ; 164(5): 1031-45, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26898330

ABSTRACT

During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal.


Subject(s)
Axons/pathology , Neurons/pathology , Signal Transduction , Amino Acid Sequence , Animals , Apoptosis , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Axons/metabolism , Mice , Molecular Sequence Data , Nerve Degeneration/pathology , Neurons/metabolism , Proteins/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , bcl-X Protein/metabolism
6.
Mol Cell ; 83(21): 3921-3930.e7, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37890482

ABSTRACT

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5' cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here, we determine high-resolution cryoelectron microscopy (cryo-EM) structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.


Subject(s)
COVID-19 , Nucleotidyltransferases , Humans , Nucleotidyltransferases/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Cryoelectron Microscopy , RNA, Viral/genetics
7.
Mol Cell ; 82(14): 2604-2617.e8, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35654044

ABSTRACT

Stress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to humans; yet, its mechanistic underpinnings and pathological consequences remain poorly defined. Small RNA profiling revealed increased abundance of a cysteine tRNA fragment (5'-tRFCys) during breast cancer metastatic progression. 5'-tRFCys was required for efficient breast cancer metastatic lung colonization and cancer cell survival. We identified Nucleolin as the direct binding partner of 5'-tRFCys. 5'-tRFCys promoted the oligomerization of Nucleolin and its bound metabolic transcripts Mthfd1l and Pafah1b1 into a higher-order transcript stabilizing ribonucleoprotein complex, which protected these transcripts from exonucleolytic degradation. Consistent with this, Mthfd1l and Pafah1b1 mediated pro-metastatic and metabolic effects downstream of 5'-tRFCys-impacting folate, one-carbon, and phosphatidylcholine metabolism. Our findings reveal that a tRF can promote oligomerization of an RNA-binding protein into a transcript stabilizing ribonucleoprotein complex, thereby driving specific metabolic pathways underlying cancer progression.


Subject(s)
Breast Neoplasms , RNA, Transfer , Breast Neoplasms/genetics , Female , Humans , Phosphoproteins , RNA, Messenger/genetics , RNA, Transfer/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/genetics , Nucleolin
8.
Mol Cell ; 77(6): 1193-1205.e5, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31981475

ABSTRACT

Ribosome-associated quality control (RQC) purges aberrant mRNAs and nascent polypeptides in a multi-step molecular process initiated by the E3 ligase ZNF598 through sensing of ribosomes collided at aberrant mRNAs and monoubiquitination of distinct small ribosomal subunit proteins. We show that G3BP1-family-USP10 complexes are required for deubiquitination of RPS2, RPS3, and RPS10 to rescue modified 40S subunits from programmed degradation. Knockout of USP10 or G3BP1 family proteins increased lysosomal ribosomal degradation and perturbed ribosomal subunit stoichiometry, both of which were rescued by a single K214R substitution of RPS3. While the majority of RPS2 and RPS3 monoubiquitination resulted from ZNF598-dependent sensing of ribosome collisions initiating RQC, another minor pathway contributed to their monoubiquitination. G3BP1 family proteins have long been considered RNA-binding proteins, however, our results identified 40S subunits and associated mRNAs as their predominant targets, a feature shared by stress granules to which G3BP1 family proteins localize under stress.


Subject(s)
DNA Helicases/metabolism , Lysosomes/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Biosynthesis , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , RNA, Messenger/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Helicases/genetics , HEK293 Cells , Humans , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , RNA, Messenger/genetics , RNA, Ribosomal, 18S , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitination
9.
Mol Cell ; 77(3): 645-655.e7, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31983508

ABSTRACT

The lysosome is an acidic multi-functional organelle with roles in macromolecular digestion, nutrient sensing, and signaling. However, why cells require acidic lysosomes to proliferate and which nutrients become limiting under lysosomal dysfunction are unclear. To address this, we performed CRISPR-Cas9-based genetic screens and identified cholesterol biosynthesis and iron uptake as essential metabolic pathways when lysosomal pH is altered. While cholesterol synthesis is only necessary, iron is both necessary and sufficient for cell proliferation under lysosomal dysfunction. Remarkably, iron supplementation restores cell proliferation under both pharmacologic and genetic-mediated lysosomal dysfunction. The rescue was independent of metabolic or signaling changes classically associated with increased lysosomal pH, uncoupling lysosomal function from cell proliferation. Finally, our experiments revealed that lysosomal dysfunction dramatically alters mitochondrial metabolism and hypoxia inducible factor (HIF) signaling due to iron depletion. Altogether, these findings identify iron homeostasis as the key function of lysosomal acidity for cell proliferation.


Subject(s)
Cell Proliferation/physiology , Iron/metabolism , Lysosomes/metabolism , Cholesterol/biosynthesis , Cholesterol/metabolism , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Hydrogen-Ion Concentration , Jurkat Cells , Lysosomes/physiology , Mitochondria/metabolism , Signal Transduction/genetics
10.
Mol Cell ; 75(5): 967-981.e9, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31300274

ABSTRACT

Post-transcriptional regulation of RNA stability is a key step in gene expression control. We describe a regulatory program, mediated by the RNA binding protein TARBP2, that controls RNA stability in the nucleus. TARBP2 binding to pre-mRNAs results in increased intron retention, subsequently leading to targeted degradation of TARBP2-bound transcripts. This is mediated by TARBP2 recruitment of the m6A RNA methylation machinery to its target transcripts, where deposition of m6A marks influences the recruitment of splicing regulators, inhibiting efficient splicing. Interactions between TARBP2 and the nucleoprotein TPR then promote degradation of these TARBP2-bound transcripts by the nuclear exosome. Additionally, analysis of clinical gene expression datasets revealed a functional role for TARBP2 in lung cancer. Using xenograft mouse models, we find that TARBP2 affects tumor growth in the lung and that this is dependent on TARBP2-mediated destabilization of ABCA3 and FOXN3. Finally, we establish ZNF143 as an upstream regulator of TARBP2 expression.


Subject(s)
Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , RNA Splicing , RNA Stability , RNA, Neoplasm/metabolism , RNA-Binding Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics , RNA-Binding Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
11.
Mol Cell ; 74(1): 45-58.e7, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30846317

ABSTRACT

Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.


Subject(s)
Calcium-Binding Proteins/metabolism , Endoplasmic Reticulum/enzymology , Glycerides/biosynthesis , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Lipogenesis , 3T3 Cells , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Proliferation , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/pathology , Enzyme Activation , Gene Expression Regulation, Enzymologic , Glycerol-3-Phosphate O-Acyltransferase/genetics , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Jurkat Cells , Lipogenesis/drug effects , Lipogenesis/genetics , Mice , Palmitic Acid/toxicity , Protein Binding
12.
Mol Cell ; 69(4): 622-635.e6, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29429924

ABSTRACT

TIA1 and TIAL1 encode a family of U-rich element mRNA-binding proteins ubiquitously expressed and conserved in metazoans. Using PAR-CLIP, we determined that both proteins bind target sites with identical specificity in 3' UTRs and introns proximal to 5' as well as 3' splice sites. Double knockout (DKO) of TIA1 and TIAL1 increased target mRNA abundance proportional to the number of binding sites and also caused accumulation of aberrantly spliced mRNAs, most of which are subject to nonsense-mediated decay. Loss of PRKRA by mis-splicing triggered the activation of the double-stranded RNA (dsRNA)-activated protein kinase EIF2AK2/PKR and stress granule formation. Ectopic expression of PRKRA cDNA or knockout of EIF2AK2 in DKO cells rescued this phenotype. Perturbation of maturation and/or stability of additional targets further compromised cell cycle progression. Our study reveals the essential contributions of the TIA1 protein family to the fidelity of mRNA maturation, translation, and RNA-stress-sensing pathways in human cells.


Subject(s)
Cell Cycle , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Stress, Physiological , T-Cell Intracellular Antigen-1/metabolism , eIF-2 Kinase/metabolism , CRISPR-Cas Systems , Cytoplasmic Granules/metabolism , HEK293 Cells , Humans , RNA Splice Sites , RNA Splicing , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/antagonists & inhibitors , Regulatory Sequences, Ribonucleic Acid , T-Cell Intracellular Antigen-1/antagonists & inhibitors , T-Cell Intracellular Antigen-1/genetics , Uridine/metabolism , eIF-2 Kinase/genetics
13.
Mol Cell Proteomics ; 23(5): 100759, 2024 May.
Article in English | MEDLINE | ID: mdl-38574859

ABSTRACT

Recombinant expression of proteins, propelled by therapeutic antibodies, has evolved into a multibillion dollar industry. Essential here is the quality control assessment of critical attributes, such as sequence fidelity, proper folding, and posttranslational modifications. Errors can lead to diminished bioactivity and, in the context of therapeutic proteins, an elevated risk for immunogenicity. Over the years, many techniques were developed and applied to validate proteins in a standardized and high-throughput fashion. One parameter has, however, so far been challenging to assess. Disulfide bridges, covalent bonds linking two cysteine residues, assist in the correct folding and stability of proteins and thus have a major influence on their efficacy. Mass spectrometry promises to be an optimal technique to uncover them in a fast and accurate fashion. In this work, we present a unique combination of sample preparation, data acquisition, and analysis facilitating the rapid and accurate assessment of disulfide bridges in purified proteins. Through microwave-assisted acid hydrolysis, the proteins are digested rapidly and artifact-free into peptides, with a substantial degree of overlap over the sequence. The nonspecific nature of this procedure, however, introduces chemical background, which is efficiently removed by integrating ion mobility preceding the mass spectrometric measurement. The nonspecific nature of the digestion step additionally necessitates new developments in data analysis, for which we extended the XlinkX node in Proteome Discoverer to efficiently process the data and ensure correctness through effective false discovery rate correction. The entire workflow can be completed within 1 h, allowing for high-throughput, high-accuracy disulfide mapping.


Subject(s)
Disulfides , Disulfides/chemistry , Disulfides/metabolism , Humans , Mass Spectrometry/methods , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Proteomics/methods
14.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38518286

ABSTRACT

Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide binds to the sex peptide receptor, triggering a series of post-mating responses. However, the origin of sex peptide receptor predates the emergence of sex peptide. The evolutionary origins of the interactions between sex peptide and sex peptide receptor and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study sex peptide-sex peptide receptor interactions and their origination. Using AlphaFold2 and long-time molecular dynamics simulations, we predicted the structure and dynamics of sex peptide-sex peptide receptor interactions. We show that sex peptide potentially binds to the ancestral states of Diptera sex peptide receptor. Notably, we found that only a few amino acid changes in sex peptide receptor are sufficient for the formation of sex peptide-sex peptide receptor interactions. Ancestral sequence reconstruction and molecular dynamics simulations further reveal that sex peptide receptor interacts with sex peptide through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides. We propose a potential mechanism whereby sex peptide-sex peptide receptor interactions arise from the preexisting myoinhibitory peptides-sex peptide receptor interface as well as early chance events both inside and outside the preexisting interface that created novel sex peptide-specific sex peptide-sex peptide receptor interactions. Our findings provide new insights into the origin and evolution of sex peptide-sex peptide receptor interactions and their relationship with myoinhibitory peptides-sex peptide receptor interactions.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Peptides/chemistry , Drosophila/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism
15.
EMBO J ; 40(2): e106696, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33346941

ABSTRACT

Eukaryotic transfer RNAs can become selectively fragmented upon various stresses, generating tRNA-derived small RNA fragments. Such fragmentation has been reported to impact a small fraction of the tRNA pool and thus presumed to not directly impact translation. We report that oxidative stress can rapidly generate tyrosine-tRNAGUA fragments in human cells-causing significant depletion of the precursor tRNA. Tyrosine-tRNAGUA depletion impaired translation of growth and metabolic genes enriched in cognate tyrosine codons. Depletion of tyrosine tRNAGUA or its translationally regulated targets USP3 and SCD repressed proliferation-revealing a dedicated tRNA-regulated growth-suppressive pathway for oxidative stress response. Tyrosine fragments are generated in a DIS3L2 exoribonuclease-dependent manner and inhibit hnRNPA1-mediated transcript destabilization. Moreover, tyrosine fragmentation is conserved in C. elegans. Thus, tRNA fragmentation can coordinately generate trans-acting small RNAs and functionally deplete a tRNA. Our findings reveal the existence of an underlying adaptive codon-based regulatory response inherent to the genetic code.


Subject(s)
Codon/genetics , Protein Biosynthesis/genetics , RNA, Transfer/genetics , Tyrosine/genetics , Animals , Caenorhabditis elegans/genetics , Cell Line , Cell Proliferation/genetics , HEK293 Cells , Humans , Oxidative Stress/genetics , Ubiquitin-Specific Proteases/genetics
16.
Nature ; 567(7749): 535-539, 2019 03.
Article in English | MEDLINE | ID: mdl-30867594

ABSTRACT

Chemical modifications of histones can mediate diverse DNA-templated processes, including gene transcription1-3. Here we provide evidence for a class of histone post-translational modification, serotonylation of glutamine, which occurs at position 5 (Q5ser) on histone H3 in organisms that produce serotonin (also known as 5-hydroxytryptamine (5-HT)). We demonstrate that tissue transglutaminase 2 can serotonylate histone H3 tri-methylated lysine 4 (H3K4me3)-marked nucleosomes, resulting in the presence of combinatorial H3K4me3Q5ser in vivo. H3K4me3Q5ser displays a ubiquitous pattern of tissue expression in mammals, with enrichment observed in brain and gut, two organ systems responsible for the bulk of 5-HT production. Genome-wide analyses of human serotonergic neurons, developing mouse brain and cultured serotonergic cells indicate that H3K4me3Q5ser nucleosomes are enriched in euchromatin, are sensitive to cellular differentiation and correlate with permissive gene expression, phenomena that are linked to the potentiation of TFIID4-6 interactions with H3K4me3. Cells that ectopically express a H3 mutant that cannot be serotonylated display significantly altered expression of H3K4me3Q5ser-target loci, which leads to deficits in differentiation. Taken together, these data identify a direct role for 5-HT, independent from its contributions to neurotransmission and cellular signalling, in the mediation of permissive gene expression.


Subject(s)
Gene Expression Regulation , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Serotonin/metabolism , Transcription Factor TFIID/metabolism , Animals , Cell Differentiation , Cell Line , Female , GTP-Binding Proteins/metabolism , Glutamine/chemistry , Glutamine/metabolism , Humans , Methylation , Mice , Mice, Inbred C57BL , Protein Binding , Protein Glutamine gamma Glutamyltransferase 2 , Serotonergic Neurons/cytology , Transglutaminases/metabolism
17.
Am J Physiol Renal Physiol ; 326(6): F971-F980, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634133

ABSTRACT

The dietary approach to stop hypertension (DASH) diet combines the antihypertensive effect of a low sodium and high potassium diet. In particular, the potassium component of the diet acts as a switch in the distal convoluted tubule to reduce sodium reabsorption, similar to a diuretic but without the side effects. Previous trials to understand the mechanism of the DASH diet were based on animal models and did not characterize changes in human ion channel protein abundance. More recently, protein cargo of urinary extracellular vesicles (uEVs) has been shown to mirror tissue content and physiological changes within the kidney. We designed an inpatient open label nutritional study transitioning hypertensive volunteers from an American style diet to DASH diet to examine physiological changes in adults with stage 1 hypertension otherwise untreated (Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH; DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3-10, 2001). Urine samples from this study were used for proteomic characterization of a large range of pure uEVs (small to large) to reveal kidney epithelium changes in response to the DASH diet. These samples were collected from nine volunteers at three time points, and mass spectrometry identified 1,800 proteins from all 27 samples. We demonstrated an increase in total SLC12A3 [sodium-chloride cotransporter (NCC)] abundance and a decrease in aquaporin-2 (AQP2) in uEVs with this mass spectrometry analysis, immunoblotting revealed a significant increase in the proportion of activated (phosphorylated) NCC to total NCC and a decrease in AQP2 from day 5 to day 11. This data demonstrates that the human kidney's response to nutritional interventions may be captured noninvasively by uEV protein abundance changes. Future studies need to confirm these findings in a larger cohort and focus on which factor drove the changes in NCC and AQP2, to which degree NCC and AQP2 contributed to the antihypertensive effect and address if some uEVs function also as a waste pathway for functionally inactive proteins rather than mirroring protein changes.NEW & NOTEWORTHY Numerous studies link DASH diet to lower blood pressure, but its mechanism is unclear. Urinary extracellular vesicles (uEVs) offer noninvasive insights, potentially replacing tissue sampling. Transitioning to DASH diet alters kidney transporters in our stage 1 hypertension cohort: AQP2 decreases, NCC increases in uEVs. This aligns with increased urine volume, reduced sodium reabsorption, and blood pressure decline. Our data highlight uEV protein changes as diet markers, suggesting some uEVs may function as waste pathways. We analyzed larger EVs alongside small EVs, and NCC in immunoblots across its molecular weight range.


Subject(s)
Aquaporin 2 , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Aquaporin 2/metabolism , Aquaporin 2/urine , Male , Female , Middle Aged , Dietary Approaches To Stop Hypertension , Solute Carrier Family 12, Member 3/metabolism , Sodium Chloride Symporters/metabolism , Hypertension/diet therapy , Hypertension/urine , Hypertension/metabolism , Hypertension/physiopathology , Adult , Diet, Sodium-Restricted , Blood Pressure , Proteomics/methods , Kidney/metabolism
18.
Mol Cell ; 64(2): 347-361, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27768872

ABSTRACT

The inflammatory response requires coordinated activation of both transcription factors and chromatin to induce transcription for defense against pathogens and environmental insults. We sought to elucidate the connections between inflammatory signaling pathways and chromatin through genomic footprinting of kinase activity and unbiased identification of prominent histone phosphorylation events. We identified H3 serine 28 phosphorylation (H3S28ph) as the principal stimulation-dependent histone modification and observed its enrichment at induced genes in mouse macrophages stimulated with bacterial lipopolysaccharide. Using pharmacological and genetic approaches, we identified mitogen- and stress-activated protein kinases (MSKs) as primary mediators of H3S28ph in macrophages. Cell-free transcription assays demonstrated that H3S28ph directly promotes p300/CBP-dependent transcription. Further, MSKs can activate both signal-responsive transcription factors and the chromatin template with additive effects on transcription. Specific inhibition of MSKs in macrophages selectively reduced transcription of stimulation-induced genes. Our results suggest that MSKs incorporate upstream signaling inputs and control multiple downstream regulators of inducible transcription.


Subject(s)
Cell Cycle Proteins/genetics , Chromatin/chemistry , Histones/genetics , Mitosis , Models, Statistical , Transcription Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Feedback, Physiological , HeLa Cells , Histones/metabolism , Humans , Kinetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Imaging , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Time Factors , Transcription Factors/metabolism , Transcription, Genetic , Red Fluorescent Protein
19.
Nature ; 541(7638): 494-499, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28077873

ABSTRACT

We are just beginning to understand how translational control affects tumour initiation and malignancy. Here we use an epidermis-specific, in vivo ribosome profiling strategy to investigate the translational landscape during the transition from normal homeostasis to malignancy. Using a mouse model of inducible SOX2, which is broadly expressed in oncogenic RAS-associated cancers, we show that despite widespread reductions in translation and protein synthesis, certain oncogenic mRNAs are spared. During tumour initiation, the translational apparatus is redirected towards unconventional upstream initiation sites, enhancing the translational efficiency of oncogenic mRNAs. An in vivo RNA interference screen of translational regulators revealed that depletion of conventional eIF2 complexes has adverse effects on normal but not oncogenic growth. Conversely, the alternative initiation factor eIF2A is essential for cancer progression, during which it mediates initiation at these upstream sites, differentially skewing translation and protein expression. Our findings unveil a role for the translation of 5' untranslated regions in cancer, and expose new targets for therapeutic intervention.


Subject(s)
5' Untranslated Regions/genetics , Carcinogenesis/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Open Reading Frames/genetics , Peptide Chain Initiation, Translational/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Animals , Carcinogenesis/pathology , Carcinoma, Squamous Cell/metabolism , Disease Models, Animal , Disease Progression , Epidermis/embryology , Epidermis/metabolism , Epidermis/pathology , Eukaryotic Initiation Factor-2/metabolism , Female , Humans , Keratinocytes , Male , Mice , Oncogenes/genetics , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Prognosis , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Skin Neoplasms/metabolism
20.
Nature ; 546(7656): 107-112, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28538730

ABSTRACT

Menopause is associated with bone loss and enhanced visceral adiposity. A polyclonal antibody that targets the ß-subunit of the pituitary hormone follicle-stimulating hormone (Fsh) increases bone mass in mice. Here, we report that this antibody sharply reduces adipose tissue in wild-type mice, phenocopying genetic haploinsufficiency for the Fsh receptor gene Fshr. The antibody also causes profound beiging, increases cellular mitochondrial density, activates brown adipose tissue and enhances thermogenesis. These actions result from the specific binding of the antibody to the ß-subunit of Fsh to block its action. Our studies uncover opportunities for simultaneously treating obesity and osteoporosis.


Subject(s)
Adipose Tissue/metabolism , Adiposity , Follicle Stimulating Hormone, beta Subunit/antagonists & inhibitors , Thermogenesis , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/drug effects , Adipose Tissue, Beige/drug effects , Adipose Tissue, Beige/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adiposity/drug effects , Animals , Antibodies/immunology , Antibodies/pharmacology , Diet, High-Fat/adverse effects , Female , Follicle Stimulating Hormone, beta Subunit/immunology , Haploinsufficiency , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Obesity/drug therapy , Obesity/prevention & control , Osteoporosis/drug therapy , Ovariectomy , Oxygen Consumption/drug effects , Receptors, FSH/antagonists & inhibitors , Receptors, FSH/genetics , Receptors, FSH/metabolism , Thermogenesis/drug effects , Uncoupling Protein 1/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL