Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 626(7999): 635-642, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297127

ABSTRACT

Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic ß-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-ß1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Elasticity , Extracellular Matrix , Liver Cirrhosis , Liver Neoplasms , Animals , Humans , beta Catenin/metabolism , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Collagen/chemistry , Collagen/metabolism , Computer Simulation , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Extracellular Matrix/metabolism , Glycation End Products, Advanced/metabolism , Integrin beta1/metabolism , Liver Neoplasms/complications , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplasm Invasiveness , Viscosity , YAP-Signaling Proteins/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
2.
J Hepatol ; 80(3): 515-530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38104635

ABSTRACT

The diagnosis and management of hepatocellular carcinoma (HCC) have improved significantly in recent years. With the introduction of immunotherapy-based combination therapy, there has been a notable expansion in treatment options for patients with unresectable HCC. Simultaneously, innovative molecular tests for early detection and management of HCC are emerging. This progress prompts a key question: as liquid biopsy techniques rise in prominence, will they replace traditional tissue biopsies, or will both techniques remain relevant? Given the ongoing challenges of early HCC detection, including issues with ultrasound sensitivity, accessibility, and patient adherence to surveillance, the evolution of diagnostic techniques is more relevant than ever. Furthermore, the accurate stratification of HCC is limited by the absence of reliable biomarkers which can predict response to therapies. While the advantages of molecular diagnostics are evident, their potential has not yet been fully harnessed, largely because tissue biopsies are not routinely performed for HCC. Liquid biopsies, analysing components such as circulating tumour cells, DNA, and extracellular vesicles, provide a promising alternative, though they are still associated with challenges related to sensitivity, cost, and accessibility. The early results from multi-analyte liquid biopsy panels are promising and suggest they could play a transformative role in HCC detection and management; however, comprehensive clinical validation is still ongoing. In this review, we explore the challenges and potential of both tissue and liquid biopsy, highlighting that these diagnostic methods, while distinct in their approaches, are set to jointly reshape the future of HCC management.


Subject(s)
Carcinoma, Hepatocellular , Liquid Biopsy , Liver Neoplasms , Humans , Biomarkers, Tumor , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/genetics , Liquid Biopsy/methods , Liver Neoplasms/diagnosis , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Neoplastic Cells, Circulating
3.
Am J Pathol ; 193(2): 148-160, 2023 02.
Article in English | MEDLINE | ID: mdl-36336065

ABSTRACT

Although rare compared with adult liver cancers, hepatoblastoma (HB) is the most common pediatric liver malignancy, and its incidence is increasing. Currently, the treatment includes surgical resection with or without chemotherapy, and in severe cases, liver transplantation in children. The effort to develop more targeted, HB-specific therapies has been stymied by the lack of fundamental knowledge about HB biology. Heat shock factor 1 (HSF1), a transcription factor, is a canonical inducer of heat shock proteins, which act as chaperone proteins to prevent or undo protein misfolding. Recent work has shown a role for HSF1 in cancer beyond the canonical heat shock response. The current study found increased HSF1 signaling in HB versus normal liver. It showed that less differentiated, more embryonic tumors had higher levels of HSF1 than more differentiated, more fetal-appearing tumors. Most strikingly, HSF1 expression levels correlated with mortality. This study used a mouse model of HB to test the effect of inhibiting HSF1 early in tumor development on cancer growth. HSF1 inhibition resulted in fewer and smaller tumors, suggesting HSF1 is needed for aggressive tumor growth. Moreover, HSF1 inhibition also increased apoptosis in tumor foci. These data suggest that HSF1 may be a viable pharmacologic target for HB treatment.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Animals , Mice , DNA-Binding Proteins/metabolism , Heat Shock Transcription Factors , Apoptosis , Heat-Shock Response
4.
Am J Pathol ; 193(5): 558-566, 2023 05.
Article in English | MEDLINE | ID: mdl-36773785

ABSTRACT

Hepatic zonation is critical for most metabolic functions in liver. Wnt signaling plays an important role in establishing and maintaining liver zonation. Yet, the anatomic expression of Wnt signaling components, especially all 10 Frizzled (Fzd) receptors, has not been characterized in adult liver. To address this, the spatial expression of Fzd receptors was quantitatively mapped in adult mouse liver via multiplex fluorescent in situ hybridization. Although all 10 Fzd receptors were expressed within a metabolic unit, Fzd receptors 1, 4, and 6 were the highest expressed. Although most Wnt signaling occurs in zone 3, expression of most Fzd receptors was not zonated. In contrast, Fzd receptor 6 was preferentially expressed in zone 1. Wnt2 and Wnt9b expression was highly zonated and primarily found in zone 3. Therefore, the current results suggest that zonated Wnt/ß-catenin signaling at baseline occurs primarily due to Wnt2 and Wnt9b rather than zonation of Fzd mRNA expression. Finally, the study showed that Fzd receptors and Wnts are not uniformly expressed by all hepatic cell types. Instead, there is broad distribution among both hepatocytes and nonparenchymal cells, including endothelial cells. Overall, this establishment of a definitive mRNA expression atlas, especially of Fzd receptors, opens the door to future functional characterization in healthy and diseased liver states.


Subject(s)
Receptors, Wnt , Wnt Proteins , Mice , Animals , Receptors, Wnt/genetics , Receptors, Wnt/metabolism , Wnt Proteins/genetics , In Situ Hybridization, Fluorescence , Endothelial Cells/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Liver/metabolism , Wnt Signaling Pathway , RNA, Messenger/genetics , RNA, Messenger/metabolism , beta Catenin/metabolism
5.
Hepatology ; 78(6): 1907-1921, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37246413

ABSTRACT

Wnt-ß-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.


Subject(s)
Liver , beta Catenin , beta Catenin/metabolism , Liver/pathology , Wnt Signaling Pathway , Liver Regeneration , Homeostasis
6.
Hepatology ; 77(5): 1593-1611, 2023 05 01.
Article in English | MEDLINE | ID: mdl-35862186

ABSTRACT

BACKGROUND AND AIMS: Liver regeneration (LR) following partial hepatectomy (PH) occurs via activation of various signaling pathways. Disruption of a single pathway can be compensated by activation of another pathway to continue LR. The Wnt-ß-catenin pathway is activated early during LR and conditional hepatocyte loss of ß-catenin delays LR. Here, we study mechanism of LR in the absence of hepatocyte-ß-catenin. APPROACH AND RESULTS: Eight-week-old hepatocyte-specific Ctnnb1 knockout mice (ß-catenin ΔHC ) were subjected to PH. These animals exhibited decreased hepatocyte proliferation at 40-120 h and decreased cumulative 14-day BrdU labeling of <40%, but all mice survived, suggesting compensation. Insulin-mediated mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) activation was uniquely identified in the ß-catenin ΔHC mice at 72-96 h after PH. Deletion of hepatocyte regulatory-associated protein of mTOR (Raptor), a critical mTORC1 partner, in the ß-catenin ΔHC mice led to progressive hepatic injury and mortality by 30 dys. PH on early stage nonmorbid Raptor ΔHC -ß-catenin ΔHC mice led to lethality by 12 h. Raptor ΔHC mice showed progressive hepatic injury and spontaneous LR with ß-catenin activation but died by 40 days. PH on early stage nonmorbid Raptor ΔHC mice was lethal by 48 h. Temporal inhibition of insulin receptor and mTORC1 in ß-catenin ΔHC or controls after PH was achieved by administration of linsitinib at 48 h or rapamycin at 60 h post-PH and completely prevented LR leading to lethality by 12-14 days. CONCLUSIONS: Insulin-mTORC1 activation compensates for ß-catenin loss to enable LR after PH. mTORC1 signaling in hepatocytes itself is critical to both homeostasis and LR and is only partially compensated by ß-catenin activation. Dual inhibition of ß-catenin and mTOR may have notable untoward hepatotoxic side effects.


Subject(s)
Liver Regeneration , beta Catenin , Mice , Animals , Liver Regeneration/physiology , beta Catenin/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Insulin/metabolism , Hepatocytes/metabolism , TOR Serine-Threonine Kinases/metabolism , Wnt Signaling Pathway/physiology , Mice, Knockout , Cell Proliferation , Sirolimus/pharmacology
7.
Hepatology ; 77(6): 1929-1942, 2023 06 01.
Article in English | MEDLINE | ID: mdl-35921500

ABSTRACT

BACKGROUND AND AIMS: Gain-of-function (GOF) mutations of CTNNB1 and loss-of-function (LOF) mutations of AXIN1 are recurrent genetic alterations in hepatocellular carcinoma (HCC). We aim to investigate the functional contribution of Hippo/YAP/TAZ in GOF CTNNB1 or LOF AXIN1 mutant HCCs. APPROACH AND RESULTS: The requirement of YAP/TAZ in c-Met/ß-Catenin and c-Met/sgAxin1-driven HCC was analyzed using conditional Yap , Taz , and Yap;Taz knockout (KO) mice. Mechanisms of AXIN1 in regulating YAP/TAZ were investigated using AXIN1 mutated HCC cells. Hepatocyte-specific inducible TTR-CreER T2KO system was applied to evaluate the role of Yap;Taz during tumor progression. Cabozantinib and G007-LK combinational treatment were tested in vitro and in vivo . Nuclear YAP/TAZ was strongly induced in c-Met/sgAxin1 mouse HCC cells. Activation of Hippo via overexpression of Lats2 or concomitant deletion of Yap and Taz significantly inhibited c-Met/sgAxin1 driven HCC development, whereas the same approaches had mild effects in c-Met/ß-Catenin HCCs. YAP is the major Hippo effector in c-Met/ß-Catenin HCCs, and both YAP and TAZ are required for c-Met/sgAxin1-dependent hepatocarcinogenesis. Mechanistically, AXIN1 binds to YAP/TAZ in human HCC cells and regulates YAP/TAZ stability. Genetic deletion of YAP/TAZ suppresses already formed c-Met/sgAxin1 liver tumors, supporting the requirement of YAP/TAZ during tumor progression. Importantly, tankyrase inhibitor G007-LK, which targets Hippo and Wnt pathways, synergizes with cabozantinib, a c-MET inhibitor, leading to tumor regression in the c-Met/sgAxin1 HCC model. CONCLUSIONS: Our studies demonstrate that YAP/TAZ are major signaling molecules downstream of LOF AXIN1 mutant HCCs, and targeting YAP/TAZ is an effective treatment against AXIN1 mutant human HCCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , beta Catenin/genetics , Carcinogenesis/genetics , Mutation , Wnt Signaling Pathway/genetics , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Axin Protein/genetics
8.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G122-G134, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37219012

ABSTRACT

Expression of transmembrane protein 16 A (TMEM16A), a calcium activated chloride channel, is elevated in some human cancers and impacts tumor cell proliferation, metastasis, and patient outcome. Evidence presented here uncovers a molecular synergy between TMEM16A and mechanistic/mammalian target of rapamycin (mTOR), a serine-threonine kinase that is known to promote cell survival and proliferation in cholangiocarcinoma (CCA), a lethal cancer of the secretory cells of bile ducts. Analysis of gene and protein expression in human CCA tissue and CCA cell line detected elevated TMEM16A expression and Cl- channel activity. The Cl- channel activity of TMEM16A impacted the actin cytoskeleton and the ability of cells to survive, proliferate, and migrate as revealed by pharmacological inhibition studies. The basal activity of mTOR, too, was elevated in the CCA cell line compared with the normal cholangiocytes. Molecular inhibition studies provided further evidence that TMEM16A and mTOR were each able to influence the regulation of the other's activity or expression respectively. Consistent with this reciprocal regulation, combined TMEM16A and mTOR inhibition produced a greater loss of CCA cell survival and migration than their individual inhibition alone. Together these data reveal that the aberrant TMEM16A expression and cooperation with mTOR contribute to a certain advantage in CCA.NEW & NOTEWORTHY This study points to the dysregulation of transmembrane protein 16 A (TMEM16A) expression and activity in cholangiocarcinoma (CCA), the inhibition of which has functional consequences. Dysregulated TMEM16A exerts an influence on the regulation of mechanistic/mammalian target of rapamycin (mTOR) activity. Moreover, the reciprocal regulation of TMEM16A by mTOR demonstrates a novel connection between these two protein families. These findings support a model in which TMEM16A intersects the mTOR pathway to regulate cell cytoskeleton, survival, proliferation, and migration in CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Cell Survival , Cholangiocarcinoma/pathology , Signal Transduction , Sirolimus/metabolism , TOR Serine-Threonine Kinases/metabolism
9.
Gastroenterology ; 163(2): 449-465, 2022 08.
Article in English | MEDLINE | ID: mdl-35550144

ABSTRACT

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (ICC) is a devastating liver cancer with extremely high intra- and inter-tumoral molecular heterogeneity, partly due to its diverse cellular origins. We investigated clinical relevance and the molecular mechanisms underlying hepatocyte (HC)-driven ICC development. METHODS: Expression of ICC driver genes in human diseased livers at risk for ICC development were examined. The sleeping beauty and hydrodynamic tail vein injection based Akt-NICD/YAP1 ICC model was used to investigate pathogenetic roles of SRY-box transcription factor 9 (SOX9) and yes-associated protein 1 (YAP1) in HC-driven ICC. We identified DNA methyltransferase 1 (DNMT1) as a YAP1 target, which was validated by loss- and gain-of-function studies, and its mechanism addressed by chromatin immunoprecipitation sequencing. RESULTS: Co-expression of AKT and Notch intracellular domain (NICD)/YAP1 in HC yielded ICC that represents 13% to 29% of clinical ICC. NICD independently regulates SOX9 and YAP1 and deletion of either, significantly delays ICC development. Yap1 or TEAD inhibition, but not Sox9 deletion, impairs HC-to-biliary epithelial cell (BEC) reprogramming. DNMT1 was discovered as a novel downstream effector of YAP1-TEAD complex that directs HC-to-BEC/ICC fate switch through the repression of HC-specific genes regulated by master regulators for HC differentiation, including hepatocyte nuclear factor 4 alpha, hepatocyte nuclear factor 1 alpha, and CCAAT/enhancer-binding protein alpha/beta. DNMT1 loss prevented NOTCH/YAP1-dependent HC-driven cholangiocarcinogenesis, and DNMT1 re-expression restored ICC development following TEAD repression. Co-expression of DNMT1 with AKT was sufficient to induce tumor development including ICC. DNMT1 was detected in a subset of HCs and dysplastic BECs in cholestatic human livers prone to ICC development. CONCLUSION: We identified a novel NOTCH-YAP1/TEAD-DNMT1 axis essential for HC-to-BEC/ICC conversion, which may be relevant in cholestasis-to-ICC pathogenesis in the clinic.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Cholestasis , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/pathology , Cholestasis/pathology , Hepatocytes/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , YAP-Signaling Proteins
10.
Gastroenterology ; 163(2): 481-494, 2022 08.
Article in English | MEDLINE | ID: mdl-35489428

ABSTRACT

BACKGROUND & AIMS: YES-associated protein (YAP) aberrant activation is implicated in intrahepatic cholangiocarcinoma (iCCA). Transcriptional enhanced associate domain (TEAD)-mediated transcriptional regulation is the primary signaling event downstream of YAP. The role of Wnt/ß-Catenin signaling in cholangiocarcinogenesis remains undetermined. Here, we investigated the possible molecular interplay between YAP and ß-Catenin cascades in iCCA. METHODS: Activated AKT (Myr-Akt) was coexpressed with YAP (YapS127A) or Tead2VP16 via hydrodynamic tail vein injection into mouse livers. Tumor growth was monitored, and liver tissues were collected and analyzed using histopathologic and molecular analysis. YAP, ß-Catenin, and TEAD interaction in iCCAs was investigated through coimmunoprecipitation. Conditional Ctnnb1 knockout mice were used to determine ß-Catenin function in murine iCCA models. RNA sequencing was performed to analyze the genes regulated by YAP and/or ß-Catenin. Immunostaining of total and nonphosphorylated/activated ß-Catenin staining was performed in mouse and human iCCAs. RESULTS: We discovered that TEAD factors are required for YAP-dependent iCCA development. However, transcriptional activation of TEADs did not fully recapitulate YAP's activities in promoting cholangiocarcinogenesis. Notably, ß-Catenin physically interacted with YAP in human and mouse iCCA. Ctnnb1 ablation strongly suppressed human iCCA cell growth and Yap-dependent cholangiocarcinogenesis. Furthermore, RNA-sequencing analysis revealed that YAP/ transcriptional coactivator with PDZ-binding motif (TAZ) regulate a set of genes significantly overlapping with those controlled by ß-Catenin. Importantly, activated/nonphosphorylated ß-Catenin was detected in more than 80% of human iCCAs. CONCLUSION: YAP induces cholangiocarcinogenesis via TEAD-dependent transcriptional activation and interaction with ß-Catenin. ß-Catenin binds to YAP in iCCA and is required for YAP full transcriptional activity, revealing the functional crosstalk between YAP and ß-Catenin pathways in cholangiocarcinogenesis.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , YAP-Signaling Proteins , beta Catenin , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Carcinogenesis , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Humans , Mice , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
11.
Gastroenterology ; 162(4): 1226-1241, 2022 04.
Article in English | MEDLINE | ID: mdl-34954226

ABSTRACT

BACKGROUND & AIMS: Sulfoconjugation of small molecules or protein peptides is a key mechanism to ensure biochemical and functional homeostasis in mammals. The PAPS synthase 2 (PAPSS2) is the primary enzyme to synthesize the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF), in which oxidative stress is a key pathogenic event, whereas sulfation of APAP contributes to its detoxification. The goal of this study was to determine whether and how PAPSS2 plays a role in APAP-induced ALF. METHODS: Gene expression was analyzed in APAP-induced ALF in patients and mice. Liver-specific Papss2-knockout mice using Alb-Cre (Papss2ΔHC) or AAV8-TBG-Cre (Papss2iΔHC) were created and subjected to APAP-induced ALF. Primary human and mouse hepatocytes were used for in vitro mechanistic analysis. RESULTS: The hepatic expression of PAPSS2 was decreased in APAP-induced ALF in patients and mice. Surprisingly, Papss2ΔHC mice were protected from APAP-induced hepatotoxicity despite having a decreased APAP sulfation, which was accompanied by increased hepatic antioxidative capacity through the activation of the p53-p2-Nrf2 axis. Treatment with a sulfation inhibitor also ameliorated APAP-induced hepatotoxicity. Gene knockdown experiments showed that the hepatoprotective effect of Papss2ΔHC was Nrf2, p53, and p21 dependent. Mechanistically, we identified p53 as a novel substrate of sulfation. Papss2 ablation led to p53 protein accumulation by preventing p53 sulfation, which disrupts p53-MDM2 interaction and p53 ubiquitination and increases p53 protein stability. CONCLUSIONS: We have uncovered a previously unrecognized and p53-mediated role of PAPSS2 in controlling oxidative response. Inhibition of p53 sulfation may be explored for the clinical management of APAP overdose.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Failure, Acute , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Humans , Liver/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/metabolism , Liver Failure, Acute/prevention & control , Mammals/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Tumor Suppressor Protein p53/metabolism
12.
Am J Pathol ; 192(1): 4-17, 2022 01.
Article in English | MEDLINE | ID: mdl-34924168

ABSTRACT

Metabolic heterogeneity or functional zonation is a key characteristic of the liver that allows different metabolic pathways to be spatially regulated within the hepatic system and together contribute to whole body homeostasis. These metabolic pathways are segregated along the portocentral axis of the liver lobule into three hepatic zones: periportal, intermediate or midzonal, and perivenous. The liver performs complementary or opposing metabolic functions within different hepatic zones while synergistic functions are regulated by overlapping zones, thereby maintaining the overall physiological stability. The Wnt/ß-catenin signaling pathway is well known for its role in liver growth, development, and regeneration. In addition, the Wnt/ß-catenin pathway plays a fundamental and dominant role in hepatic zonation and signals to orchestrate various functions of liver metabolism and pathophysiology. The ß-catenin protein is the central player in the Wnt/ß-catenin signaling cascade, and its activation is crucial for metabolic patterning of the liver. However, dysregulation of Wnt/ß-catenin signaling is also implicated in different liver pathologies, including those associated with metabolic syndrome. ß-Catenin is preferentially localized in the central region of the hepatic lobule surrounding the central vein and regulates multiple functions of this region. This review outlines the role of Wnt/ß-catenin signaling pathway in controlling the different metabolic processes surrounding the central vein and its relation to liver homeostasis and dysfunction.


Subject(s)
Homeostasis , Liver/metabolism , Wnt Signaling Pathway , Animals , Gene Expression Regulation , Heme/biosynthesis , Humans , Wnt Signaling Pathway/genetics , Xenobiotics/metabolism
13.
Toxicol Appl Pharmacol ; 468: 116514, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37061008

ABSTRACT

BACKGROUND & AIMS: Vinyl chloride (VC) monomer is a volatile organic compound commonly used in industry. At high exposure levels, VC causes liver cancer and toxicant-associated steatohepatitis. However, lower exposure levels (i.e., sub-regulatory exposure limits) that do not directly damage the liver, enhance injury caused by Western diet (WD). It is still unknown if the long-term impact of transient low-concentration VC enhances the risk of liver cancer development. This is especially a concern given that fatty liver disease is in and of itself a risk factor for the development of liver cancer. METHODS: C57Bl/6 J mice were fed WD or control diet (CD) for 1 year. During the first 12 weeks of feeding only, mice were also exposed to VC via inhalation at sub-regulatory limit concentrations (<1 ppm) or air for 6 h/day, 5 days/week. RESULTS: Feeding WD for 1 year caused significant hepatic injury, which was exacerbated by VC. Additionally, VC increased the number of tumors which ranged from moderately to poorly differentiated hepatocellular carcinoma (HCC). Transcriptomic analysis demonstrated VC-induced changes in metabolic but also ribosomal processes. Epitranscriptomic analysis showed a VC-induced shift of the modification pattern that has been associated with metabolic disease, mitochondrial dysfunction, and cancer. CONCLUSIONS: These data indicate that VC sensitizes the liver to other stressors (e.g., WD), resulting in enhanced tumorigenesis. These data raise concerns about potential interactions between VC exposure and WD. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Vinyl Chloride , Mice , Animals , Vinyl Chloride/toxicity , Vinyl Chloride/metabolism , Transcriptome , Carcinoma, Hepatocellular/pathology , Diet, Western , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism
14.
Nat Chem Biol ; 17(3): 298-306, 2021 03.
Article in English | MEDLINE | ID: mdl-33495648

ABSTRACT

The adenosine monophosphate (AMP)-activated protein kinase (Ampk) is a central regulator of metabolic pathways, and increasing Ampk activity has been considered to be an attractive therapeutic target. Here, we have identified an orphan ubiquitin E3 ligase subunit protein, Fbxo48, that targets the active, phosphorylated Ampkα (pAmpkα) for polyubiquitylation and proteasomal degradation. We have generated a novel Fbxo48 inhibitory compound, BC1618, whose potency in stimulating Ampk-dependent signaling greatly exceeds 5-aminoimidazole-4-carboxamide-1-ß-ribofuranoside (AICAR) or metformin. This compound increases the biological activity of Ampk not by stimulating the activation of Ampk, but rather by preventing activated pAmpkα from Fbxo48-mediated degradation. We demonstrate that, consistent with augmenting Ampk activity, BC1618 promotes mitochondrial fission, facilitates autophagy and improves hepatic insulin sensitivity in high-fat-diet-induced obese mice. Hence, we provide a unique bioactive compound that inhibits pAmpkα disposal. Together, these results define a new pathway regulating Ampk biological activity and demonstrate the potential utility of modulating this pathway for therapeutic benefit.


Subject(s)
AMP-Activated Protein Kinases/genetics , Hypoglycemic Agents/pharmacology , Obesity/drug therapy , Proteasome Endopeptidase Complex/drug effects , Protein Processing, Post-Translational/drug effects , Ubiquitin-Protein Ligases/genetics , AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Cell Line, Transformed , Diet, High-Fat , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , F-Box Proteins , Humans , Hypoglycemic Agents/chemical synthesis , Insulin Resistance , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Mitochondrial Dynamics/drug effects , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Phosphorylation , Polyubiquitin/genetics , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Stability/drug effects , Proteolysis/drug effects , Ribonucleotides/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
15.
FASEB J ; 36(2): e22157, 2022 02.
Article in English | MEDLINE | ID: mdl-35032404

ABSTRACT

Congenital hepatic fibrosis (CHF) is a developmental liver disease that is caused by mutations in genes that encode ciliary proteins and is characterized by bile duct dysplasia and portal fibrosis. Recent work has demonstrated that mutations in ANKS6 can cause CHF due to its role in bile duct development. Here, we report a novel ANKS6 mutation, which was identified in an infant presenting with neonatal jaundice due to underlying biliary abnormalities and liver fibrosis. Molecular analysis revealed that ANKS6 liver pathology is associated with the infiltration of inflammatory macrophages to the periportal fibrotic tissue and ductal epithelium. To further investigate the role of macrophages in CHF pathophysiology, we generated a novel liver-specific Anks6 knockout mouse model. The mutant mice develop biliary abnormalities and rapidly progressing periportal fibrosis reminiscent of human CHF. The development of portal fibrosis in Anks6 KO mice coincided with the accumulation of inflammatory monocytes and macrophages in the mutant liver. Gene expression and flow cytometric analysis demonstrated the preponderance of M1- over M2-like macrophages at the onset of fibrosis. A critical role for macrophages in promoting peribiliary fibrosis was demonstrated by depleting the macrophages with clodronate liposomes which effectively reduced inflammatory gene expression and fibrosis, and ameliorated tissue histology and biliary function in Anks6 KO livers. Together, this study demonstrates that macrophages play an important role in the initiation of liver fibrosis in ANKS6-deficient livers and their therapeutic elimination may provide an avenue to mitigate CHF in patients.


Subject(s)
Carrier Proteins/metabolism , Cholestasis/pathology , Liver Cirrhosis/metabolism , Liver/metabolism , Macrophages/metabolism , Animals , Disease Models, Animal , Gene Expression/physiology , Inflammation/metabolism , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/pathology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology
16.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628798

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths globally. Incidence rates are steadily increasing, creating an unmet need for new therapeutic options. Recently, the inhibition of sirtuin-2 (Sirt2) was proposed as a potential treatment for HCC, despite contradictory findings of its role as both a tumor promoter and suppressor in vitro. Sirt2 functions as a lysine deacetylase enzyme. However, little is known about its biological influence, despite its implication in several age-related diseases. This study evaluated Sirt2's role in HCC in vivo using an inducible c-MYC transgene in Sirt2+/+ and Sirt2-/- mice. Sirt2-/- HCC mice had smaller, less proliferative, and more differentiated liver tumors, suggesting that Sirt2 functions as a tumor promoter in this context. Furthermore, Sirt2-/- HCCs had significantly less c-MYC oncoprotein and reduction in c-MYC nuclear localization. The RNA-seq showed that only three genes were significantly dysregulated due to loss of Sirt2, suggesting the underlying mechanism is due to Sirt2-mediated changes in the acetylome, and that the therapeutic inhibition of Sirt2 would not perturb the oncogenic transcriptome. The findings of this study suggest that Sirt2 inhibition could be a promising molecular target for slowing HCC growth.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Mice, Transgenic , Carcinoma, Hepatocellular/genetics , Sirtuin 2/genetics , Liver Neoplasms/genetics , Carcinogens , Disease Models, Animal
17.
Semin Liver Dis ; 42(1): 17-33, 2022 02.
Article in English | MEDLINE | ID: mdl-35073587

ABSTRACT

Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.


Subject(s)
Biliary Tract , Biological Phenomena , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Child , Humans , Liver/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins
18.
Am J Pathol ; 191(5): 885-901, 2021 05.
Article in English | MEDLINE | ID: mdl-33662348

ABSTRACT

Hepatocytes are highly polarized epithelia. Loss of hepatocyte polarity is associated with various liver diseases, including cholestasis. However, the molecular underpinnings of hepatocyte polarization remain poorly understood. Loss of ß-catenin at adherens junctions is compensated by γ-catenin and dual loss of both catenins in double knockouts (DKOs) in mice liver leads to progressive intrahepatic cholestasis. However, the clinical relevance of this observation, and further phenotypic characterization of the phenotype, is important. Herein, simultaneous loss of ß-catenin and γ-catenin was identified in a subset of liver samples from patients of progressive familial intrahepatic cholestasis and primary sclerosing cholangitis. Hepatocytes in DKO mice exhibited defects in apical-basolateral localization of polarity proteins, impaired bile canaliculi formation, and loss of microvilli. Loss of polarity in DKO livers manifested as epithelial-mesenchymal transition, increased hepatocyte proliferation, and suppression of hepatocyte differentiation, which was associated with up-regulation of transforming growth factor-ß signaling and repression of hepatocyte nuclear factor 4α expression and activity. In conclusion, concomitant loss of the two catenins in the liver may play a pathogenic role in subsets of cholangiopathies. The findings also support a previously unknown role of ß-catenin and γ-catenin in the maintenance of hepatocyte polarity. Improved understanding of the regulation of hepatocyte polarization processes by ß-catenin and γ-catenin may potentially benefit development of new therapies for cholestasis.


Subject(s)
Cholestasis, Intrahepatic/pathology , Hepatocyte Nuclear Factor 4/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , beta Catenin/metabolism , gamma Catenin/metabolism , Adherens Junctions/metabolism , Animals , Cell Line, Tumor , Cell Polarity , Hepatocyte Nuclear Factor 4/genetics , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Knockout , Transforming Growth Factor beta/genetics , beta Catenin/genetics , gamma Catenin/economics , gamma Catenin/genetics
19.
Hepatology ; 74(2): 741-759, 2021 08.
Article in English | MEDLINE | ID: mdl-33529367

ABSTRACT

BACKGROUND AND AIMS: HCC remains a major unmet clinical need. Although activating catenin beta-1 (CTNNB1) mutations are observed in prominent subsets of HCC cases, these by themselves are insufficient for hepatocarcinogenesis. Coexpression of mutant CTNNB1 with clinically relevant co-occurrence has yielded HCCs. Here, we identify cooperation between ß-catenin and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in HCC. APPROACH AND RESULTS: Public HCC data sets were assessed for concomitant presence of CTNNB1 mutations and either mutations in nuclear factor erythroid-2-related factor-2 (NFE2L2) or Kelch like-ECH-associated protein 1 (KEAP1), or Nrf2 activation by gene signature. HCC development in mice and similarity to human HCC subsets was assessed following coexpression of T41A-CTNNB1 with either wild-type (WT)-, G31A-, or T80K-NFE2L2. Based on mammalian target of rapamycin complex 1 activation in CTNNB1-mutated HCCs, response of preclinical HCC to mammalian target of rapamycin (mTOR) inhibitor was investigated. Overall, 9% of HCC cases showed concomitant CTNNB1 mutations and Nrf2 activation, subsets of which were attributable to mutations in NFE2L2/KEAP1. Coexpression of mutated CTNNB1 with mutant NFE2L2, but not WT-NFE2L2, led to HCC development and mortality by 12-14 weeks. These HCCs were positive for ß-catenin targets, like glutamine synthetase and cyclin-D1, and Nrf2 targets, like NAD(P)H quinone dehydrogenase 1 and peroxiredoxin 1. RNA-sequencing and pathway analysis showed high concordance of preclinical HCC to human HCC subset showing activation of unique (iron homeostasis and glioblastoma multiforme signaling) and expected (glutamine metabolism) pathways. NFE2L2-CTNNB1 HCC mice were treated with mTOR inhibitor everolimus (5-mg/kg diet ad libitum), which led to >50% decrease in tumor burden. CONCLUSIONS: Coactivation of ß-catenin and Nrf2 is evident in 9% of all human HCCs. Coexpression of mutant NFE2L2 and mutant CTNNB1 led to clinically relevant HCC development in mice, which responded to mTOR inhibitors. Thus, this model has both biological and therapeutic implications.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , NF-E2-Related Factor 2/genetics , beta Catenin/genetics , Adolescent , Aged , Aged, 80 and over , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Datasets as Topic , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Humans , Liver/pathology , Liver Neoplasms/pathology , Male , Mice , Middle Aged , Mutation , NF-E2-Related Factor 2/metabolism , Signal Transduction/genetics , Tumor Burden/genetics , beta Catenin/metabolism
20.
Hepatology ; 73(5): 2005-2022, 2021 05.
Article in English | MEDLINE | ID: mdl-32794202

ABSTRACT

BACKGROUND AND AIMS: Constitutive androstane receptor (CAR) agonists, such as 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), are known to cause robust hepatocyte proliferation and hepatomegaly in mice along with induction of drug metabolism genes without any associated liver injury. Yes-associated protein (Yap) is a key transcription regulator that tightly controls organ size, including that of liver. Our and other previous studies suggested increased nuclear localization and activation of Yap after TCPOBOP treatment in mice and the potential role of Yap in CAR-driven proliferative response. Here, we investigated a direct role of Yap in CAR-driven hepatomegaly and hepatocyte proliferation using hepatocyte-specific Yap-knockout (KO) mice. APPROACH AND RESULTS: Adeno-associated virus 8-thyroxine binding globulin promoter-Cre recombinase vector was injected to Yap-floxed mice for achieving hepatocyte-specific Yap deletion followed by TCPOBOP treatment. Yap deletion did not decrease protein expression of CAR or CAR-driven induction of drug metabolism genes (including cytochrome P450 [Cyp] 2b10, Cyp2c55, and UDP-glucuronosyltransferase 1a1 [Ugt1a1]). However, Yap deletion substantially reduced TCPOBOP-induced hepatocyte proliferation. TCPOBOP-driven cell cycle activation was disrupted in Yap-KO mice because of delayed (and decreased) induction of cyclin D1 and higher expression of p21, resulting in decreased phosphorylation of retinoblastoma protein. Furthermore, the induction of other cyclins, which are sequentially involved in progression through cell cycle (including cyclin E1, A2, and B1), and important mitotic regulators (such as Aurora B kinase and polo-like kinase 1) was remarkably reduced in Yap-KO mice. Microarray analysis revealed that 26% of TCPOBOP-responsive genes that were mainly related to proliferation, but not to drug metabolism, were altered by Yap deletion. Yap regulated these proliferation genes through alerting expression of Myc and forkhead box protein M1, two critical transcriptional regulators of CAR-mediated hepatocyte proliferation. CONCLUSIONS: Our study revealed an important role of Yap signaling in CAR-driven hepatocyte proliferation; however, CAR-driven induction of drug metabolism genes was independent of Yap.


Subject(s)
Cell Proliferation/physiology , Constitutive Androstane Receptor/physiology , Hepatocytes/physiology , Inactivation, Metabolic/genetics , YAP-Signaling Proteins/physiology , Animals , Cell Cycle , Female , Gene Expression Regulation , Genes/genetics , Hepatocytes/metabolism , Humans , Inactivation, Metabolic/physiology , Liver Regeneration , Mice, Knockout , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL