Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Publication year range
1.
J Virol ; 98(5): e0169323, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563763

ABSTRACT

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.


Subject(s)
COVID-19 Vaccines , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Female , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Disease Models, Animal , Genetic Vectors , Measles Vaccine/immunology , Measles Vaccine/genetics , Measles virus/immunology , Measles virus/genetics , Mice, Inbred BALB C , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
2.
Adv Exp Med Biol ; 1435: 199-218, 2024.
Article in English | MEDLINE | ID: mdl-38175477

ABSTRACT

Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.


Subject(s)
Clostridioides difficile , Clostridioides , Clostridioides difficile/genetics , Base Composition , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Genomics
3.
Environ Microbiol ; 25(8): 1424-1438, 2023 08.
Article in English | MEDLINE | ID: mdl-36876921

ABSTRACT

Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm. The population of Vibrio crassostreae, a species associated specifically to oysters, was genetically structured into clades of near clonal strains, leading to the isolation of closely related phages forming large modules in phage-bacterial infection networks. For Vibrio chagasii, which blooms in the water column, a lower number of closely related hosts and a higher diversity of isolated phages resulted in small modules in the phage-bacterial infection network. Over time, phage load was correlated with V. chagasii abundance, indicating a role of host blooms in driving phage abundance. Genetic experiments further demonstrated that these phage blooms can generate epigenetic and genetic variability that can counteract host defence systems. These results highlight the importance of considering both the environmental dynamics and the genetic structure of the host when interpreting phage-bacteria networks.


Subject(s)
Bacteriophages , Vibrio , Vibrio/genetics , Ecosystem , Genetic Structures
4.
Emerg Infect Dis ; 27(10): 2711-2714, 2021 10.
Article in English | MEDLINE | ID: mdl-34545800

ABSTRACT

Oropouche fever is a zoonotic dengue-like syndrome caused by Oropouche virus. In August-September 2020, dengue-like syndrome developed in 41 patients in a remote rainforest village in French Guiana. By PCR or microneutralization, 23 (82.1%) of 28 tested patients were positive for Oropouche virus, documenting its emergence in French Guiana.


Subject(s)
Bunyaviridae Infections , Orthobunyavirus , Bunyaviridae Infections/epidemiology , Disease Outbreaks , French Guiana/epidemiology , Humans , Orthobunyavirus/genetics
5.
RNA Biol ; 18(11): 1931-1952, 2021 11.
Article in English | MEDLINE | ID: mdl-33629931

ABSTRACT

Noncoding RNAs (ncRNA) have emerged as important components of regulatory networks governing bacterial physiology and virulence. Previous deep-sequencing analysis identified a large diversity of ncRNAs in the human enteropathogen Clostridioides (Clostridium) difficile. Some of them are trans-encoded RNAs that could require the RNA chaperone protein Hfq for their action. Recent analysis suggested a pleiotropic role of Hfq in C. difficile with the most pronounced effect on sporulation, a key process during the infectious cycle of this pathogen. However, a global view of RNAs interacting with C. difficile Hfq is missing. In the present study, we performed RNA immunoprecipitation high-throughput sequencing (RIP-Seq) to identify Hfq-associated RNAs in C. difficile. Our work revealed a large set of Hfq-interacting mRNAs and ncRNAs, including mRNA leaders and coding regions, known and potential new ncRNAs. In addition to trans-encoded RNAs, new categories of Hfq ligands were found including cis-antisense RNAs, riboswitches and CRISPR RNAs. ncRNA-mRNA and ncRNA-ncRNA pairings were postulated through computational predictions. Investigation of one of the Hfq-associated ncRNAs, RCd1, suggests that this RNA contributes to the control of late stages of sporulation in C. difficile. Altogether, these data provide essential molecular basis for further studies of post-transcriptional regulatory network in this enteropathogen.


Subject(s)
Clostridioides difficile/growth & development , Clostridioides/physiology , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/metabolism , RNA, Bacterial/metabolism , Spores, Bacterial/physiology , Virulence , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Genome, Bacterial , Host Factor 1 Protein/genetics , Humans , RNA, Bacterial/genetics
6.
Mol Microbiol ; 111(6): 1671-1688, 2019 06.
Article in English | MEDLINE | ID: mdl-30882947

ABSTRACT

For the human pathogen Clostridioides (also known as Clostridium) difficile, the ability to adapt to nutrient availability is critical for its proliferation and production of toxins during infection. Synthesis of the toxins is regulated by the availability of certain carbon sources, fermentation products and amino acids (e.g. proline, cysteine, isoleucine, leucine and valine). The effect of proline is attributable at least in part to its role as an inducer and substrate of D-proline reductase (PR), a Stickland reaction that regenerates NAD+ from NADH. Many Clostridium spp. use Stickland metabolism (co-fermentation of pairs of amino acids) to generate ATP and NAD+ . Synthesis of PR is activated by PrdR, a proline-responsive regulatory protein. Here we report that PrdR, in the presence of proline, represses other NAD+ -generating pathways, such as the glycine reductase and succinate-acetyl CoA utilization pathways leading to butyrate production, but does so indirectly by affecting the activity of Rex, a global redox-sensing regulator that responds to the NAD+ /NADH ratio. Our results indicate that PR activity is the favored mechanism for NAD+ regeneration and that both Rex and PrdR influence toxin production. Using the hamster model of C. difficile infection, we revealed the importance of PrdR-regulated Stickland metabolism in the virulence of C. difficile.


Subject(s)
Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Gene Expression Regulation, Bacterial , Gene Products, rex/genetics , NAD/metabolism , Proline/metabolism , Amino Acid Oxidoreductases/metabolism , Animals , Clostridioides difficile/pathogenicity , Female , Gene Products, rex/antagonists & inhibitors , Mesocricetus , Multienzyme Complexes , Oxidation-Reduction , Regeneration , Virulence
7.
Nucleic Acids Res ; 46(9): 4733-4751, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29529286

ABSTRACT

Clostridium difficile, a major human enteropathogen, must cope with foreign DNA invaders and multiple stress factors inside the host. We have recently provided an experimental evidence of defensive function of the C. difficile CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system important for its survival within phage-rich gut communities. Here, we describe the identification of type I toxin-antitoxin (TA) systems with the first functional antisense RNAs in this pathogen. Through the analysis of deep-sequencing data, we demonstrate the general co-localization with CRISPR arrays for the majority of sequenced C. difficile strains. We provide a detailed characterization of the overlapping convergent transcripts for three selected TA pairs. The toxic nature of small membrane proteins is demonstrated by the growth arrest induced by their overexpression. The co-expression of antisense RNA acting as an antitoxin prevented this growth defect. Co-regulation of CRISPR-Cas and type I TA genes by the general stress response Sigma B and biofilm-related factors further suggests a possible link between these systems with a role in recurrent C. difficile infections. Our results provide the first description of genomic links between CRISPR and type I TA systems within defense islands in line with recently emerged concept of functional coupling of immunity and cell dormancy systems in prokaryotes.


Subject(s)
CRISPR-Cas Systems , Clostridioides difficile/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Toxin-Antitoxin Systems/genetics , Genome, Bacterial , Genomics , RNA Stability , RNA, Bacterial/metabolism
8.
PLoS Genet ; 12(7): e1006134, 2016 07.
Article in English | MEDLINE | ID: mdl-27380413

ABSTRACT

As interest in the therapeutic and biotechnological potentials of bacteriophages has grown, so has value in understanding their basic biology. However, detailed knowledge of infection cycles has been limited to a small number of model bacteriophages, mostly infecting Escherichia coli. We present here the first analysis coupling data obtained from global next-generation approaches, RNA-Sequencing and metabolomics, to characterize interactions between the virulent bacteriophage PAK_P3 and its host Pseudomonas aeruginosa. We detected a dramatic global depletion of bacterial transcripts coupled with their replacement by viral RNAs over the course of infection, eventually leading to drastic changes in pyrimidine metabolism. This process relies on host machinery hijacking as suggested by the strong up-regulation of one bacterial operon involved in RNA processing. Moreover, we found that RNA-based regulation plays a central role in PAK_P3 lifecycle as antisense transcripts are produced mainly during the early stage of infection and viral small non coding RNAs are massively expressed at the end of infection. This work highlights the prominent role of RNA metabolism in the infection strategy of a bacteriophage belonging to a new characterized sub-family of viruses with promising therapeutic potential.


Subject(s)
Bacteriophages/genetics , Metabolomics , Pseudomonas aeruginosa/genetics , RNA, Viral/genetics , Bacteriophages/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Viral , High-Throughput Nucleotide Sequencing , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/virology , RNA, Viral/metabolism
9.
Appl Environ Microbiol ; 84(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29150513

ABSTRACT

Clostridioides difficile (formerly Clostridium difficile) is a pathogenic bacterium displaying great genetic diversity. A significant proportion of this diversity is due to the presence of integrated prophages. Here, we provide an in-depth analysis of phiCD211, also known as phiCDIF1296T, the largest phage identified in C. difficile so far, with a genome of 131 kbp. It shares morphological and genomic similarity with other large siphophages, like phage 949, infecting Lactococcus lactis, and phage c-st, infecting Clostridium botulinum A PhageTerm analysis indicated the presence of 378-bp direct terminal repeats at the phiCD211 genome termini. Among striking features of phiCD211, the presence of several transposase and integrase genes suggests past recombination events with other mobile genetic elements. Several gene products potentially influence the bacterial lifestyle and fitness, including a putative AcrB/AcrD/AcrF multidrug resistance protein, an EzrA septation ring formation regulator, and a spore protease. We also identified a CRISPR locus and a cas3 gene. We screened 2,584 C. difficile genomes available and detected 149 prophages sharing ≥80% nucleotide identity with phiCD211 (5% prevalence). Overall, phiCD211-like phages were detected in C. difficile strains corresponding to 21 different multilocus sequence type groups, showing their high prevalence. Comparative genomic analyses revealed the existence of several clusters of highly similar phiCD211-like phages. Of note, large chromosome inversions were observed in some members, as well as multiple gene insertions and module exchanges. This highlights the great plasticity and gene coding potential of the phiCD211/phiCDIF1296T genome. Our analyses also suggest active evolution involving recombination with other mobile genetic elements.IMPORTANCEClostridioides difficile is a clinically important pathogen representing a serious threat to human health. Our hypothesis is that genetic differences between strains caused by the presence of integrated prophages could explain the apparent differences observed in the virulence of different C. difficile strains. In this study, we provide a full characterization of phiCD211, also known as phiCDIF1296T, the largest phage known to infect C. difficile so far. Screening 2,584 C. difficile genomes revealed the presence of highly similar phiCD211-like phages in 5% of the strains analyzed, showing their high prevalence. Multiple-genome comparisons suggest that evolution of the phiCD211-like phage community is dynamic, and some members have acquired genes that could influence bacterial biology and fitness. Our study further supports the relevance of studying phages in C. difficile to better understand the epidemiology of this clinically important human pathogen.


Subject(s)
Clostridioides difficile/genetics , Genetic Variation , Genome, Viral/genetics , Prophages/genetics , Clostridioides difficile/pathogenicity , Clostridioides difficile/virology , DNA, Viral , Genetic Fitness , Genome, Bacterial , Genomics/methods , Humans , Multilocus Sequence Typing , Prevalence , Sequence Analysis, DNA , Virulence
10.
Adv Exp Med Biol ; 1050: 59-75, 2018.
Article in English | MEDLINE | ID: mdl-29383664

ABSTRACT

Clostridium difficile, a gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of genome sequences in large numbers, mainly due to the use of next-generation sequencing methods, have undoubtedly shown their immense advantages in the determination of the C. difficile population structure. The implementation of fine-scale comparative genomic approaches have paved the way to global transmission and recurrence studies, but also more targeted studies such as the PaLoc or the CRISPR/Cas systems. In this chapter, we provide an overview of the recent and significant findings on C. difficile using comparative genomics studies with implication for the epidemiology, infection control and understanding of the evolution of C. difficile.


Subject(s)
Clostridioides difficile/genetics , Genomics , CRISPR-Cas Systems/genetics , Clostridium Infections/epidemiology , Clostridium Infections/genetics , Clostridium Infections/microbiology , Host-Pathogen Interactions/genetics , Humans , Phylogeny
11.
Environ Microbiol ; 19(5): 1933-1958, 2017 05.
Article in English | MEDLINE | ID: mdl-28198085

ABSTRACT

Clostridium difficile is a major cause of diarrhoea associated with antibiotherapy. Exposed to stresses in the gut, C. difficile can survive by inducing protection, detoxification and repair systems. In several firmicutes, most of these systems are controlled by the general stress response involving σB . In this work, we studied the role of σB in the physiopathology of C. difficile. We showed that the survival of the sigB mutant during the stationary phase was reduced. Using a transcriptome analysis, we showed that σB controls the expression of ∼25% of genes including genes involved in sporulation, metabolism, cell surface biogenesis and the management of stresses. By contrast, σB does not control toxin gene expression. In agreement with the up-regulation of sporulation genes, the sporulation efficiency is higher in the sigB mutant than in the wild-type strain. sigB inactivation also led to increased sensitivity to acidification, cationic antimicrobial peptides, nitric oxide and ROS. In addition, we showed for the first time that σB also plays a crucial role in oxygen tolerance in this strict anaerobe. Finally, we demonstrated that the fitness of colonisation by the sigB mutant is greatly affected in a dixenic mouse model of colonisation when compared to the wild-type strain.


Subject(s)
Bacterial Proteins/genetics , Clostridioides difficile/genetics , Gastrointestinal Tract/microbiology , Gene Expression Regulation, Bacterial/genetics , Sigma Factor/genetics , Animals , Bacterial Proteins/metabolism , Clostridioides difficile/pathogenicity , DNA Repair/genetics , Diarrhea/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Female , Gene Expression Profiling , Germ-Free Life , Mice , Mice, Inbred C3H , Oxidative Stress/genetics , Sigma Factor/metabolism , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Up-Regulation , Virulence Factors/genetics
12.
Nucleic Acids Res ; 43(3): 1456-68, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25578965

ABSTRACT

The RpoS/σ(S) sigma subunit of RNA polymerase (RNAP) activates transcription of stationary phase genes in many Gram-negative bacteria and controls adaptive functions, including stress resistance, biofilm formation and virulence. In this study, we address an important but poorly understood aspect of σ(S)-dependent control, that of a repressor. Negative regulation by σ(S) has been proposed to result largely from competition between σ(S) and other σ factors for binding to a limited amount of core RNAP (E). To assess whether σ(S) binding to E alone results in significant downregulation of gene expression by other σ factors, we characterized an rpoS mutant of Salmonella enterica serovar Typhimurium producing a σ(S) protein proficient for Eσ(S) complex formation but deficient in promoter DNA binding. Genome expression profiling and physiological assays revealed that this mutant was defective for negative regulation, indicating that gene repression by σ(S) requires its binding to DNA. Although the mechanisms of repression by σ(S) are likely specific to individual genes and environmental conditions, the study of transcription downregulation of the succinate dehydrogenase operon suggests that σ competition at the promoter DNA level plays an important role in gene repression by Eσ(S).


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , DNA-Directed RNA Polymerases/metabolism , Sigma Factor/metabolism , Promoter Regions, Genetic
13.
Infect Immun ; 84(8): 2389-405, 2016 08.
Article in English | MEDLINE | ID: mdl-27297391

ABSTRACT

The pathogenicity of Clostridium difficile is linked to its ability to produce two toxins: TcdA and TcdB. The level of toxin synthesis is influenced by environmental signals, such as phosphotransferase system (PTS) sugars, biotin, and amino acids, especially cysteine. To understand the molecular mechanisms of cysteine-dependent repression of toxin production, we reconstructed the sulfur metabolism pathways of C. difficile strain 630 in silico and validated some of them by testing C. difficile growth in the presence of various sulfur sources. High levels of sulfide and pyruvate were produced in the presence of 10 mM cysteine, indicating that cysteine is actively catabolized by cysteine desulfhydrases. Using a transcriptomic approach, we analyzed cysteine-dependent control of gene expression and showed that cysteine modulates the expression of genes involved in cysteine metabolism, amino acid biosynthesis, fermentation, energy metabolism, iron acquisition, and the stress response. Additionally, a sigma factor (SigL) and global regulators (CcpA, CodY, and Fur) were tested to elucidate their roles in the cysteine-dependent regulation of toxin production. Among these regulators, only sigL inactivation resulted in the derepression of toxin gene expression in the presence of cysteine. Interestingly, the sigL mutant produced less pyruvate and H2S than the wild-type strain. Unlike cysteine, the addition of 10 mM pyruvate to the medium for a short time during the growth of the wild-type and sigL mutant strains reduced expression of the toxin genes, indicating that cysteine-dependent repression of toxin production is mainly due to the accumulation of cysteine by-products during growth. Finally, we showed that the effect of pyruvate on toxin gene expression is mediated at least in part by the two-component system CD2602-CD2601.


Subject(s)
Clostridioides difficile/physiology , Cysteine/metabolism , Enterocolitis, Pseudomembranous/microbiology , Amino Acids/metabolism , Animals , Bacterial Toxins/biosynthesis , Bacterial Toxins/genetics , Cell Line , Chlorocebus aethiops , Energy Metabolism/genetics , Gene Expression Regulation, Bacterial , Homocysteine/metabolism , Hydrogen Sulfide/metabolism , Intracellular Space/metabolism , Metabolic Networks and Pathways , Pyruvic Acid/metabolism , Vero Cells
14.
PLoS Genet ; 9(10): e1003756, 2013.
Article in English | MEDLINE | ID: mdl-24098137

ABSTRACT

Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σ(F) and σ(G) in the forespore and σ(E) and σ(K) in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σ(F), σ(E), σ(G) and σ(K) regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σ(F) regulon, 97 σ(E)-dependent genes, 50 σ(G)-governed genes and 56 genes under σ(K) control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σ(E) or σ(K) control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σ(E) regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σ(E) regulon in the mother cell was not strictly under the control of σ(F) despite the fact that the forespore product SpoIIR was required for the processing of pro-σ(E). In addition, the σ(K) regulon was not controlled by σ(G) in C. difficile in agreement with the lack of pro-σ(K) processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes.


Subject(s)
Bacillus subtilis/genetics , Clostridioides difficile/genetics , Evolution, Molecular , Sigma Factor/genetics , Spores, Bacterial/growth & development , Transcription, Genetic , Bacillus subtilis/pathogenicity , Cell Differentiation , Clostridioides difficile/pathogenicity , Diarrhea/genetics , Diarrhea/microbiology , Gene Expression Regulation, Bacterial , Genome, Bacterial , Humans , Promoter Regions, Genetic , Protein Binding , Sigma Factor/metabolism , Spores, Bacterial/genetics
15.
PLoS Genet ; 9(10): e1003782, 2013.
Article in English | MEDLINE | ID: mdl-24098139

ABSTRACT

Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.


Subject(s)
Cell Differentiation/genetics , Clostridioides difficile/genetics , Evolution, Molecular , Sigma Factor/genetics , Spores, Bacterial/growth & development , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Clostridioides difficile/growth & development , Clostridioides difficile/pathogenicity , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Bacterial , Humans , Metabolic Networks and Pathways , Mutation , Sigma Factor/metabolism , Transcription, Genetic
16.
PLoS Genet ; 9(5): e1003493, 2013 May.
Article in English | MEDLINE | ID: mdl-23675309

ABSTRACT

Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA-seq and differential 5'-end RNA-seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA-based regulation of gene expression in this emergent enteropathogen.


Subject(s)
Clostridioides difficile/genetics , RNA, Small Untranslated/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , Riboswitch/genetics , Clostridioides difficile/pathogenicity , Computer Simulation , DNA, Intergenic , Gene Expression Regulation, Bacterial , Genome, Bacterial , Humans , RNA, Antisense/genetics , RNA, Small Untranslated/isolation & purification
17.
Antimicrob Agents Chemother ; 58(8): 4957-60, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24913157

ABSTRACT

Stable resistance to metronidazole in a nontoxigenic Clostridium difficile strain was investigated at both the genomic and proteomic levels. Alterations in the metabolic pathway involving the pyruvate-ferredoxin oxidoreductase were found, suggesting that reduction of metronidazole, required for its activity, may be less efficient in this strain. Proteomic studies also showed a cellular response to oxidative stress.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Pyruvate Synthase/metabolism , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/genetics , Clostridioides difficile/classification , Clostridioides difficile/drug effects , Enterocolitis, Pseudomembranous/drug therapy , Enterocolitis, Pseudomembranous/microbiology , Gene Expression , Humans , Metabolic Networks and Pathways/genetics , Metronidazole/metabolism , Metronidazole/pharmacology , Microbial Sensitivity Tests , Oxidative Stress , Phylogeny , Proteomics , Pyruvate Synthase/genetics , Ribotyping
18.
Nucleic Acids Res ; 40(21): 10701-18, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22989714

ABSTRACT

The catabolite control protein CcpA is a pleiotropic regulator that mediates the global transcriptional response to rapidly catabolizable carbohydrates, like glucose in Gram-positive bacteria. By whole transcriptome analyses, we characterized glucose-dependent and CcpA-dependent gene regulation in Clostridium difficile. About 18% of all C. difficile genes are regulated by glucose, for which 50% depend on CcpA for regulation. The CcpA regulon comprises genes involved in sugar uptake, fermentation and amino acids metabolism, confirming the role of CcpA as a link between carbon and nitrogen pathways. Using combination of chromatin immunoprecipitation and genome sequence analysis, we detected 55 CcpA binding sites corresponding to ∼140 genes directly controlled by CcpA. We defined the C. difficile CcpA consensus binding site (cre(CD) motif), that is, 'RRGAAAANGTTTTCWW'. Binding of purified CcpA protein to 19 target cre(CD) sites was demonstrated by electrophoretic mobility shift assay. CcpA also directly represses key factors in early steps of sporulation (Spo0A and SigF). Furthermore, the C. difficile toxin genes (tcdA and tcdB) and their regulators (tcdR and tcdC) are direct CcpA targets. Finally, CcpA controls a complex and extended regulatory network through the modulation of a large set of regulators.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/genetics , Gene Expression Regulation, Bacterial , Glucose/metabolism , Transcription Factors/metabolism , Amino Acids/metabolism , Base Sequence , Binding Sites , Carbohydrate Metabolism , Carbon/metabolism , Cell Wall/metabolism , Chromatin Immunoprecipitation , Clostridioides difficile/metabolism , Clostridioides difficile/physiology , Consensus Sequence , Energy Metabolism , Gene Expression Profiling , Gene Regulatory Networks , Nucleotide Motifs , Spores, Bacterial/physiology , Stress, Physiological , Transcription, Genetic
19.
Gut Microbes ; 16(1): 2320291, 2024.
Article in English | MEDLINE | ID: mdl-38417029

ABSTRACT

Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Peptides , Polyketides , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Tumor Microenvironment , Drug Resistance, Neoplasm , Mutagens/metabolism , Neoplasm Recurrence, Local , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Polyketides/metabolism , Lipids
20.
Infect Immun ; 81(10): 3757-69, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23897605

ABSTRACT

Clostridium difficile is currently the major cause of nosocomial intestinal diseases associated with antibiotic therapy in adults. In order to improve our knowledge of C. difficile-host interactions, we analyzed the genome-wide temporal expression of C. difficile 630 genes during the first 38 h of mouse colonization to identify genes whose expression is modulated in vivo, suggesting that they may play a role in facilitating the colonization process. In the ceca of the C. difficile-monoassociated mice, 549 genes of the C. difficile genome were differentially expressed compared to their expression during in vitro growth, and they were distributed in several functional categories. Overall, our results emphasize the roles of genes involved in host adaptation. Colonization results in a metabolic shift, with genes responsible for the fermentation as well as several other metabolic pathways being regulated inversely to those involved in carbon metabolism. In addition, several genes involved in stress responses, such as ferrous iron uptake or the response to oxidative stress, were regulated in vivo. Interestingly, many genes encoding conserved hypothetical proteins (CHP) were highly and specifically upregulated in vivo. Moreover, genes for all stages of sporulation were quickly induced in vivo, highlighting the observation that sporulation is central to the persistence of C. difficile in the gut and to its ability to spread in the environment. Finally, we inactivated two genes that were differentially expressed in vivo and evaluated the relative colonization fitness of the wild-type and mutant strains in coinfection experiments. We identified a CHP as a putative colonization factor, supporting the suggestion that the in vivo transcriptomic approach can unravel new C. difficile virulence genes.


Subject(s)
Adaptation, Physiological/genetics , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Gene Expression Regulation, Bacterial/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cecum/microbiology , Clostridioides difficile/physiology , Clostridium Infections/microbiology , Genome, Bacterial , Mice , Mutation , Peptidoglycan/genetics , Peptidoglycan/metabolism , Stress, Physiological , Up-Regulation , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL