Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Development ; 144(5): 830-836, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28246212

ABSTRACT

A core structural and functional motif of the vertebrate central nervous system is discrete clusters of neurons or 'nuclei'. Yet the developmental mechanisms underlying this fundamental mode of organisation are largely unknown. We have previously shown that the assembly of motor neurons into nuclei depends on cadherin-mediated adhesion. Here, we demonstrate that the emergence of mature topography among motor nuclei involves a novel interplay between spontaneous activity, cadherin expression and gap junction communication. We report that nuclei display spontaneous calcium transients, and that changes in the activity patterns coincide with the course of nucleogenesis. We also find that these activity patterns are disrupted by manipulating cadherin or gap junction expression. Furthermore, inhibition of activity disrupts nucleogenesis, suggesting that activity feeds back to maintain integrity among motor neurons within a nucleus. Our study suggests that a network of interactions between cadherins, gap junctions and spontaneous activity governs neuron assembly, presaging circuit formation.


Subject(s)
Cadherins/metabolism , Central Nervous System/embryology , Gap Junctions/metabolism , Motor Neurons/cytology , Amino Acid Motifs , Animals , Brain Stem/embryology , Calcium/metabolism , Cell Adhesion , Cell Nucleus/metabolism , Chick Embryo , Image Processing, Computer-Assisted , Mice , NIH 3T3 Cells
2.
J Neuroinflammation ; 15(1): 101, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29625610

ABSTRACT

BACKGROUND: A dose-limiting side effect of chemotherapeutic agents such as vincristine (VCR) is neuropathic pain, which is poorly managed at present. Chemokine-mediated immune cell/neuron communication in preclinical VCR-induced pain forms an intriguing basis for the development of analgesics. In a murine VCR model, CX3CR1 receptor-mediated signalling in monocytes/macrophages in the sciatic nerve orchestrates the development of mechanical hypersensitivity (allodynia). CX3CR1-deficient mice however still develop allodynia, albeit delayed; thus, additional underlying mechanisms emerge as VCR accumulates. Whilst both patrolling and inflammatory monocytes express CX3CR1, only inflammatory monocytes express CCR2 receptors. We therefore assessed the role of CCR2 in monocytes in later stages of VCR-induced allodynia. METHODS: Mechanically evoked hypersensitivity was assessed in VCR-treated CCR2- or CX3CR1-deficient mice. In CX3CR1-deficient mice, the CCR2 antagonist, RS-102895, was also administered. Immunohistochemistry and Western blot analysis were employed to determine monocyte/macrophage infiltration into the sciatic nerve as well as neuronal activation in lumbar DRG, whilst flow cytometry was used to characterise monocytes in CX3CR1-deficient mice. In addition, THP-1 cells were used to assess CX3CR1-CCR2 receptor interactions in vitro, with Western blot analysis and ELISA being used to assess expression of CCR2 and proinflammatory cytokines. RESULTS: We show that CCR2 signalling plays a mechanistic role in allodynia that develops in CX3CR1-deficient mice with increasing VCR exposure. Indeed, the CCR2 antagonist, RS-102895, proves ineffective in mice possessing functional CX3CR1 receptors but reduces VCR-induced allodynia in CX3CR1-deficient mice, in which CCR2+ monocytes are elevated by VCR. We suggest that a novel interaction between CX3CR1 and CCR2 receptors in monocytes accounts for the therapeutic effect of RS-102895 in CX3CR1-deficient mice. Indeed, we observe that CCR2, along with its ligand, CCL2, is elevated in the sciatic nerve in CX3CR1-deficient mice, whilst in THP-1 cells (human monocytes), downregulating CX3CR1 upregulates CCR2 expression via p38 MAP kinase signalling. We also show that the CX3CR1-CCR2 interaction in vitro regulates the release of pronociceptive cytokines TNF-α and IL1ß. CONCLUSIONS: Our data suggests that CCL2/CCR2 signalling plays a crucial role in VCR-induced allodynia in CX3CR1-deficient mice, which arises as a result of an interaction between CX3CR1 and CCR2 in monocytes.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Monocytes/metabolism , Pain/chemically induced , Receptors, CCR2/metabolism , Receptors, CXCR3/metabolism , Signal Transduction/physiology , Vincristine/toxicity , Animals , Benzoxazines/pharmacology , Calcium-Binding Proteins/metabolism , Cell Line, Transformed , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hyperalgesia/physiopathology , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Monocytes/drug effects , Pain/drug therapy , Pain/pathology , Piperidines/pharmacology , Receptors, CCR2/genetics , Receptors, CXCR3/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
3.
J Neurochem ; 141(4): 520-531, 2017 05.
Article in English | MEDLINE | ID: mdl-27973687

ABSTRACT

Chronic pain is a distressing condition, which is experienced even when the painful stimulus, whether surgery or disease related, has subsided. Current treatments for chronic pain show limited efficacy and come with a host of undesirable side-effects, and thus there is a need for new, more effective therapies to be developed. The mechanisms underlying chronic pain are not fully understood at present, although pre-clinical models have facilitated the progress of this understanding considerably in the last decade. The mechanisms underlying chronic pain were initially thought to be neurocentric. However, we now appreciate that non-neuronal cells play a significant role in nociceptive signalling through their communication with neurons. One of the major signalling pathways, which mediates neuron/non-neuronal communication, is chemokine signalling. In this review, we discuss selected chemokines that have been reported to play a pivotal role in the mechanisms underlying chronic pain in a variety of pre-clinical models. Approaches that target each of the chemokines discussed in this review come with their advantages and disadvantages; however, the inhibition of chemokine actions is emerging as an innovative therapeutic strategy, which is now reaching the clinic, with the chemokine Fractalkine and its CX3 CR1 receptor leading the way. This article is part of the special article series "Pain".


Subject(s)
Chemokines/drug effects , Chronic Pain/drug therapy , Signal Transduction/drug effects , Animals , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/physiology , Humans
4.
Brain ; 137(Pt 7): 1894-906, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24898351

ABSTRACT

Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/physiopathology , Age Factors , Androgens/pharmacology , Androgens/therapeutic use , Animals , Anterior Horn Cells/physiopathology , Apoptosis/drug effects , Apoptosis/genetics , Cells, Cultured , Dihydrotestosterone/pharmacology , Dihydrotestosterone/therapeutic use , Disease Models, Animal , Embryo, Mammalian , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscular Disorders, Atrophic/drug therapy , Muscular Disorders, Atrophic/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Spinal Cord/pathology , Thapsigargin/therapeutic use
5.
Front Mol Neurosci ; 10: 397, 2017.
Article in English | MEDLINE | ID: mdl-29230166

ABSTRACT

In cancer treatments a dose-limiting side-effect of chemotherapeutic agents is the development of neuropathic pain, which is poorly managed by clinically available drugs at present. Chemotherapy-induced painful neuropathy (CIPN) is a major cause of premature cessation of treatment and so a greater understanding of the underlying mechanisms and the development of novel, more effective therapies, is greatly needed. In some cases, only a weak correlation between chemotherapy-induced pain and neuronal damage is observed both clinically and preclinically. As such, a critical role for non-neuronal cells, such as immune cells, and their communication with neurons in CIPN has recently been appreciated. In this mini-review, we will discuss preclinical evidence for the role of monocytes/macrophages in the periphery in CIPN, with a focus on that which is associated with the chemotherapeutic agents vincristine and paclitaxel. In addition we will discuss the potential mechanisms that regulate monocyte/macrophage-neuron crosstalk in this context. Informed by preclinical data, we will also consider the value of monocytes/macrophages as therapeutic targets for the treatment of CIPN clinically. Approaches that manipulate the signaling pathways discussed in this review show both promise and potential pitfalls. Nonetheless, they are emerging as innovative therapeutic targets with CX3CL1/R1-regulation of monocyte/macrophage-neuron communication currently emerging as a promising front-runner.

6.
Methods Mol Biol ; 1493: 403-416, 2017.
Article in English | MEDLINE | ID: mdl-27787867

ABSTRACT

A combination of both in vivo and in vitro techniques is invaluable for studying semaphorin signaling in the avian central nervous system. Here we describe how both types of approaches can be used to compliment each other in order to unravel the role that semaphorins play during embryonic development and elucidate the functional consequences of semaphorin knockdown using RNA interference vectors. We describe and discuss specifically the use of in ovo electroporation and primary oculomotor neuron culture to identify the role of semaphorins in oculomotor neuron migration and assess functional consequences of semaphorin disruption in this system.


Subject(s)
Birds/embryology , Semaphorins/metabolism , Signal Transduction , Animals , Electroporation , Gene Knockdown Techniques
7.
Nat Commun ; 8(1): 1778, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176651

ABSTRACT

Following peripheral axon injury, dysregulation of non-coding microRNAs (miRs) occurs in dorsal root ganglia (DRG) sensory neurons. Here we show that DRG neuron cell bodies release extracellular vesicles, including exosomes containing miRs, upon activity. We demonstrate that miR-21-5p is released in the exosomal fraction of cultured DRG following capsaicin activation of TRPV1 receptors. Pure sensory neuron-derived exosomes released by capsaicin are readily phagocytosed by macrophages in which an increase in miR-21-5p expression promotes a pro-inflammatory phenotype. After nerve injury in mice, miR-21-5p is upregulated in DRG neurons and both intrathecal delivery of a miR-21-5p antagomir and conditional deletion of miR-21 in sensory neurons reduce neuropathic hypersensitivity as well as the extent of inflammatory macrophage recruitment in the DRG. We suggest that upregulation and release of miR-21 contribute to sensory neuron-macrophage communication after damage to the peripheral nerve.


Subject(s)
Exosomes/metabolism , Ganglia, Spinal/metabolism , Macrophages/immunology , MicroRNAs/metabolism , Neuralgia/metabolism , Sensory Receptor Cells/metabolism , Animals , Axons/metabolism , Exosomes/genetics , Ganglia, Spinal/cytology , Ganglia, Spinal/injuries , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Neuralgia/genetics , Neuralgia/immunology , Phagocytosis , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
8.
Cortex ; 45(9): 1050-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19345344

ABSTRACT

Interactions between the ventral premotor (PMv) and the primary motor cortex (M1) are crucial for transforming an object's geometrical properties, such as its size and shape, into a motor command suitable for grasp of the object. Recently, we showed that PMv interacts with M1 in a specific fashion, depending on the hand posture. However, the functional connectivity between PMv and M1 during the preparation of an actual grasp is still unknown. To address this issue, PMv-M1 interactions were tested while subjects were preparing to grasp different visible objects requiring either a precision grip or a whole hand grasp. A conditioning-test transcranial magnetic stimulation (TMS) paradigm was used: a test stimulus was applied over M1 either in isolation or after a conditioning stimulus delivered, at different delays, over the ipsilateral PMv. Motor evoked potentials (MEPs) were recorded in the first dorsal interosseus and abductor digiti minimi muscles, which show highly differentiated activity according to grasp. While subjects prepared to grasp, delivering a conditioning PMv pulse 6 or 8msec before a test pulse over M1 strikingly facilitated MEPs in the specific muscles that were used in the upcoming grasp. This degree of facilitation correlated with the amount of muscle activity used later in the trial to grasp the objects. The present results demonstrate that, during grasp preparation, the PMv-M1 interactions are muscle-specific. PMv appears to process the object geometrical properties relevant for the upcoming grasp, and transmits this information to M1, which in turn generates a motor command appropriate for the grasp. We also reveal that the grasp-specific facilitation resulting from PMv-M1 interactions is differently related to the upcoming grasp muscle activity than is that from paired-pulse stimulation over M1, suggesting that these two TMS paradigms assess the excitability of cortico-cortical pathways devoted to the control of grasp at two different levels.


Subject(s)
Frontal Lobe/physiology , Hand Strength/physiology , Neural Pathways/physiology , Action Potentials/physiology , Adult , Analysis of Variance , Electromyography , Evoked Potentials, Motor/physiology , Humans , Movement/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Neurons/physiology , Psychomotor Performance/physiology , Signal Processing, Computer-Assisted , Transcranial Magnetic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL