Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Publication year range
1.
Cell ; 186(26): 5739-5750.e17, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38070510

ABSTRACT

Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.


Subject(s)
Electroencephalography , Parvalbumins , Sleep , Animals , Mice , Cholinergic Neurons/physiology , Frontal Lobe/metabolism , Parvalbumins/metabolism , Sleep/physiology , Wakefulness/physiology
2.
Annu Rev Neurosci ; 45: 491-513, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803584

ABSTRACT

Functional ultrasound (fUS) is a neuroimaging method that uses ultrasound to track changes in cerebral blood volume as an indirect readout of neuronal activity at high spatiotemporal resolution. fUS is capable of imaging head-fixed or freely behaving rodents and of producing volumetric images of the entire mouse brain. It has been applied to many species, including primates and humans. Now that fUS is reaching maturity, it is being adopted by the neuroscience community. However, the nature of the fUS signal and the different implementations of fUS are not necessarily accessible to nonspecialists. This review aims to introduce these ultrasound concepts to all neuroscientists. We explain the physical basis of the fUS signal and the principles of the method, present the state of the art of its hardware implementation, and give concrete examples of current applications in neuroscience. Finally, we suggest areas for improvement during the next few years.


Subject(s)
Brain , Neuroimaging , Animals , Brain/diagnostic imaging , Brain/physiology , Mice
3.
Nat Methods ; 12(9): 873-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26192084

ABSTRACT

Innovative imaging methods help to investigate the complex relationship between brain activity and behavior in freely moving animals. Functional ultrasound (fUS) is an imaging modality suitable for recording cerebral blood volume (CBV) dynamics in the whole brain but has so far been used only in head-fixed and anesthetized rodents. We designed a fUS device for tethered brain imaging in freely moving rats based on a miniaturized ultrasound probe and a custom-made ultrasound scanner. We monitored CBV changes in rats during various behavioral states such as quiet rest, after whisker or visual stimulations, and in a food-reinforced operant task. We show that fUS imaging in freely moving rats could efficiently decode brain activity in real time.


Subject(s)
Brain Mapping/instrumentation , Brain/physiology , Echoencephalography/instrumentation , Monitoring, Ambulatory/instrumentation , Animals , Computer Systems , Equipment Design , Equipment Failure Analysis , Maze Learning/physiology , Miniaturization , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
4.
Neuroimage ; 101: 138-49, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25008960

ABSTRACT

Functional ultrasound imaging is a method recently developed to assess brain activity via hemodynamics in rodents. Doppler ultrasound signals allow the measurement of cerebral blood volume (CBV) and red blood cells' (RBCs') velocity in small vessels. However, this technique originally requires performing a large craniotomy that limits its use to acute experiments only. Moreover, a detailed description of the hemodynamic changes that underlie functional ultrasound imaging has not been described but is essential for a better interpretation of neuroimaging data. To overcome the limitation of the craniotomy, we developed a dedicated thinned skull surgery for chronic imaging. This procedure did not induce brain inflammation nor neuronal death as confirmed by immunostaining. We successfully acquired both high-resolution images of the microvasculature and functional movies of the brain hemodynamics on the same animal at 0, 2, and 7 days without loss of quality. Then, we investigated the spatiotemporal evolution of the CBV hemodynamic response function (HRF) in response to sensory-evoked electrical stimulus (1 mA) ranging from 1 (200 µs) to 25 pulses (5s). Our results indicate that CBV HRF parameters such as the peak amplitude, the time to peak, the full width at half-maximum and the spatial extent of the activated area increase with stimulus duration. Functional ultrasound imaging was sensitive enough to detect hemodynamic responses evoked by only a single pulse stimulus. We also observed that the RBC velocity during activation could be separated in two distinct speed ranges with the fastest velocities located in the upper part of the cortex and slower velocities in deeper layers. For the first time, functional ultrasound imaging demonstrates its potential to image brain activity chronically in small animals and offers new insights into the spatiotemporal evolution of cerebral hemodynamics.


Subject(s)
Brain/physiology , Evoked Potentials, Somatosensory/physiology , Functional Neuroimaging/methods , Hemodynamics/physiology , Ultrasonography, Doppler, Transcranial/methods , Animals , Blood Volume/physiology , Brain/blood supply , Cerebral Cortex/blood supply , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Electric Stimulation/methods , Erythrocytes/diagnostic imaging , Forelimb/physiology , Male , Rats , Rats, Sprague-Dawley , Skull/surgery
5.
Nat Methods ; 8(8): 662-4, 2011 Jul 03.
Article in English | MEDLINE | ID: mdl-21725300

ABSTRACT

We present functional ultrasound (fUS), a method for imaging transient changes in blood volume in the whole brain at better spatiotemporal resolution than with other functional brain imaging modalities. fUS uses plane-wave illumination at high frame rate and can measure blood volumes in smaller vessels than previous ultrasound methods. fUS identifies regions of brain activation and was used to image whisker-evoked cortical and thalamic responses and the propagation of epileptiform seizures in the rat brain.


Subject(s)
Algorithms , Brain Mapping/methods , Brain/physiopathology , Evoked Potentials , Image Interpretation, Computer-Assisted/methods , Ultrasonography/methods , Animals , Rats
6.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026833

ABSTRACT

Over the last decade, functional ultrasound (fUS) has risen as a critical tool in functional neuroimaging, leveraging hemodynamic changes to infer neural activity indirectly. Recent studies have established a strong correlation between neural spike rates (SR) and functional ultrasound signals. However, understanding their spatial distribution and variability across different brain areas is required to thoroughly interpret fUS signals. In this regard, we conducted simultaneous fUS imaging and Neuropixels recordings during stimulus-evoked activity in awake mice within three regions the visual pathway. Our findings indicate that the temporal dynamics of fUS and SR signals are linearly correlated, though the correlation coefficients vary among visual regions. Conversely, the spatial correlation between the two signals remains consistent across all regions with a spread of approximately 300 micrometers. Finally, we introduce a model that integrates the spatial and temporal components of the fUS signal, allowing for a more accurate interpretation of fUS images.

7.
J Cereb Blood Flow Metab ; 44(1): 6-18, 2024 01.
Article in English | MEDLINE | ID: mdl-37503862

ABSTRACT

Ischemic stroke occurs abruptly causing sudden neurologic deficits, and therefore, very little is known about hemodynamic perturbations in the brain immediately after stroke onset. Here, functional ultrasound imaging was used to monitor variations in relative cerebral blood volume (rCBV) compared to baseline. rCBV levels were analyzed brain-wide and continuously at high spatiotemporal resolution (100 µm, 2 Hz) until 70mins after stroke onset in rats. We compared two stroke models, with either a permanent occlusion of the middle cerebral artery (MCAo) or a tandem occlusion of both the common carotid and middle cerebral arteries (CCAo + MCAo). We observed a typical hemodynamic pattern, including a quick drop of the rCBV after MCAo, followed by spontaneous reperfusion of several brain regions located in the vicinity of the ischemic core. The severity and location of the ischemia were variable within groups. On average, the severity of the ischemia was in good agreement with the lesion volume (24 hrs after stroke) for MCAo group, while larger for the CCAo + MCAo model. For both groups, we observed that infarcts extended to initially non-ischemic regions located rostrally to the ischemic core. These regions strongly colocalize with the origin of transient hemodynamic events associated with spreading depolarizations.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Rats , Animals , Brain Ischemia/pathology , Ischemic Stroke/pathology , Brain/pathology , Stroke/pathology , Ischemia/pathology , Ultrasonography , Hemodynamics , Disease Models, Animal , Infarction, Middle Cerebral Artery/pathology
8.
Heliyon ; 10(5): e27432, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495198

ABSTRACT

Positioning and navigation are essential components of neuroimaging as they improve the quality and reliability of data acquisition, leading to advances in diagnosis, treatment outcomes, and fundamental understanding of the brain. Functional ultrasound imaging is an emerging technology providing high-resolution images of the brain vasculature, allowing for the monitoring of brain activity. However, as the technology is relatively new, there is no standardized tool for inferring the position in the brain from the vascular images. In this study, we present a deep learning-based framework designed to address this challenge. Our approach uses an image classification task coupled with a regression on the resulting probabilities to determine the position of a single image. To evaluate its performance, we conducted experiments using a dataset of 51 rat brain scans. The training positions were extracted at intervals of 375 µm, resulting in a positioning error of 176 µm. Further GradCAM analysis revealed that the predictions were primarily driven by subcortical vascular structures. Finally, we assessed the robustness of our method in a cortical stroke where the brain vasculature is severely impaired. Remarkably, no specific increase in the number of misclassifications was observed, confirming the method's reliability in challenging conditions. Overall, our framework provides accurate and flexible positioning, not relying on a pre-registered reference but rather on conserved vascular patterns.

9.
J Acoust Soc Am ; 134(2): 1632-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23927203

ABSTRACT

High-intensity focused ultrasound causes selective tissue necrosis efficiently and safely, namely, in the prostate, liver, and uterine fibroid. Nevertheless, ablation of brain tissue using focused ultrasound remains limited due to strong aberrations induced by the skull. To achieve ultrasonic transcranial brain ablation, such aberrations have to be compensated. In this study, non-invasive therapy was performed on monkeys using adaptive correction of the therapeutic beam and 3D simulations of transcranial wave propagation based on 3D computed tomographic (CT) scan information. The aim of the study was two-fold: induce lesions in a non-human primate brain non-invasively and investigate the potential side effects. Stereotactic targeting was performed on five Macaca fascicularis individuals. Each hemisphere was treated separately with a 15-day interval and animals were sacrificed two days after the last treatment. The ultrasonic dose delivered at the focus was increased from one treatment location to the other to estimate the thermal dose for tissue alteration. Thermal doses in the brain were determined by numerical computations. Treatment efficiency and safety were evaluated histologically. The threshold for tissue damage in the brain was measured to be between 90 and 280 cumulative equivalent minutes at 43 °C. Intravenous injection of corticoids before the treatment limited the side effects.


Subject(s)
Cerebrum/surgery , Neurosurgical Procedures/methods , Ultrasonic Surgical Procedures/methods , Adrenal Cortex Hormones/administration & dosage , Animals , Cerebrum/diagnostic imaging , Cerebrum/drug effects , Cerebrum/pathology , Computer Simulation , Drug Administration Schedule , Equipment Design , Hot Temperature , Imaging, Three-Dimensional , Injections, Intravenous , Macaca fascicularis , Models, Animal , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/instrumentation , Numerical Analysis, Computer-Assisted , Preoperative Care , Radiographic Image Interpretation, Computer-Assisted , Stereotaxic Techniques , Surgery, Computer-Assisted , Time Factors , Tomography, X-Ray Computed , Transducers , Ultrasonic Surgical Procedures/adverse effects , Ultrasonic Surgical Procedures/instrumentation
10.
Elife ; 122023 Nov 21.
Article in English | MEDLINE | ID: mdl-37988288

ABSTRACT

Anesthesia is a major confounding factor in preclinical stroke research as stroke rarely occurs in sedated patients. Moreover, anesthesia affects both brain functions and the stroke outcome acting as neurotoxic or protective agents. So far, no approaches were well suited to induce stroke while imaging hemodynamics along with simultaneous large-scale recording of brain functions in awake animals. For this reason, the first critical hours following the stroke insult and associated functional alteration remain poorly understood. Here, we present a strategy to investigate both stroke hemodynamics and stroke-induced functional alterations without the confounding effect of anesthesia, i.e., under awake condition. Functional ultrasound (fUS) imaging was used to continuously monitor variations in cerebral blood volume (CBV) in +65 brain regions/hemispheres for up to 3 hr after stroke onset. The focal cortical ischemia was induced using a chemo-thrombotic agent suited for permanent middle cerebral artery occlusion in awake rats and followed by ipsi- and contralesional whiskers stimulation to investigate on the dynamic of the thalamocortical functions. Early (0-3 hr) and delayed (day 5) fUS recording enabled to characterize the features of the ischemia (location, CBV loss), spreading depolarizations (occurrence, amplitude) and functional alteration of the somatosensory thalamocortical circuits. Post-stroke thalamocortical functions were affected at both early and later time points (0-3 hr and 5 days) after stroke. Overall, our procedure facilitates early, continuous, and chronic assessments of hemodynamics and cerebral functions. When integrated with stroke studies or other pathological analyses, this approach seeks to enhance our comprehension of physiopathologies towards the development of pertinent therapeutic interventions.


Subject(s)
Anesthesia , Stroke , Humans , Rats , Animals , Wakefulness , Stroke/diagnostic imaging , Stroke/therapy , Infarction, Middle Cerebral Artery , Ultrasonography
11.
Front Neurosci ; 16: 831650, 2022.
Article in English | MEDLINE | ID: mdl-35495056

ABSTRACT

Red blood cell velocity (RBCv), cerebral blood flow (CBF), and volume (CBV) are three key parameters when describing brain hemodynamics. Functional ultrasound imaging is a Doppler-based method allowing for real-time measurement of relative CBV at high spatiotemporal resolution (100 × 110 × 300 µm3, up to 10 Hz) and large scale. Nevertheless, the measure of RBCv and CBF in small cortical vessels with functional ultrasound imaging remains challenging because of their orientation and size, which impairs the ability to perform precise measurements. We designed a directional flow filter to overpass these limitations allowing us to measure RBCv in single vessels using a standard functional ultrasound imaging system without contrast agents (e.g., microbubbles). This method allows to quickly extract the number of vessels in the cortex that was estimated to be approximately 650/cm3 in adult rats, with a 55-45% ratio for penetrating arterioles versus ascending venules. Then, we analyzed the changes in RBCv in these vessels during forepaw stimulation. We observed that ∼40 vessels located in the primary somatosensory forelimb cortex display a significant increase of the RBCv (median ΔRBCv ∼15%, maximal ΔRBCv ∼60%). As expected, we show that RBCv was higher for penetrating arterioles located in the center than in the periphery of the activated area. The proposed approach extends the capabilities of functional ultrasound imaging, which may contribute to a better understanding of the neurovascular coupling at the brain-wide scale.

12.
Neuron ; 110(10): 1631-1640.e4, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35278361

ABSTRACT

Functional ultrasound imaging (fUSI) is an appealing method for measuring blood flow and thus infer brain activity, but it relies on the physiology of neurovascular coupling and requires extensive signal processing. To establish to what degree fUSI trial-by-trial signals reflect neural activity, we performed simultaneous fUSI and neural recordings with Neuropixels probes in awake mice. fUSI signals strongly correlated with the slow (<0.3 Hz) fluctuations in the local firing rate and were closely predicted by the smoothed firing rate of local neurons, particularly putative inhibitory neurons. The optimal smoothing filter had a width of ∼3 s, matched the hemodynamic response function of awake mice, was invariant across mice and stimulus conditions, and was similar in the cortex and hippocampus. fUSI signals also matched neural firing spatially: firing rates were as highly correlated across hemispheres as fUSI signals. Thus, blood flow measured by ultrasound bears a simple and accurate relationship to neuronal firing.


Subject(s)
Hemodynamics , Neurovascular Coupling , Animals , Cerebral Cortex , Hemodynamics/physiology , Mice , Neurons/physiology , Ultrasonography/methods
13.
Phys Rev Lett ; 106(5): 054301, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405400

ABSTRACT

Focusing a wave in an unknown inhomogeneous medium is an open problem in wave physics. This work presents an iterative method able to focus in pulse-echo mode in an inhomogeneous medium containing a random distribution of scatterers. By performing a coherent summation of the random echoes backscattered from a set of points surrounding the desired focus, a virtual bright pointlike reflector is generated. A time-reversal method enables an iterative convergence towards the optimal wave field focusing at the location of this virtual scatterer. Thanks to this iterative time-reversal process, it is possible to focus at any arbitrary point in the heterogeneous medium even in the absence of pointlike source. An experimental demonstration is given for the correction of strongly distorted images in the field of medical ultrasound imaging. This concept enables envisioning many other applications in wave physics.

14.
Nat Protoc ; 16(7): 3547-3571, 2021 07.
Article in English | MEDLINE | ID: mdl-34089019

ABSTRACT

Most brain functions engage a network of distributed regions. Full investigation of these functions thus requires assessment of whole brains; however, whole-brain functional imaging of behaving animals remains challenging. This protocol describes how to follow brain-wide activity in awake head-fixed mice using functional ultrasound imaging, a method that tracks cerebral blood volume dynamics. We describe how to set up a functional ultrasound imaging system with a provided acquisition software (miniScan), establish a chronic cranial window (timing surgery: ~3-4 h) and image brain-wide activity associated with a stimulus at high resolution (100 × 110 × 300 µm and 10 Hz per brain slice, which takes ~45 min per imaging session). We include codes that enable data to be registered to a reference atlas, production of 3D activity maps, extraction of the activity traces of ~250 brain regions and, finally, combination of data from multiple sessions (timing analysis averages ~2 h). This protocol enables neuroscientists to observe global brain processes in mice.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Ultrasonography , Wakefulness/physiology , Animals , Artifacts , Head , Mice, Inbred C57BL , Time Factors
15.
Neuron ; 109(11): 1888-1905.e10, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33930307

ABSTRACT

Neuronal cell types are arranged in brain-wide circuits that guide behavior. In mice, the superior colliculus innervates a set of targets that direct orienting and defensive actions. We combined functional ultrasound imaging (fUSI) with optogenetics to reveal the network of brain regions functionally activated by four collicular cell types. Stimulating each neuronal group triggered different behaviors and activated distinct sets of brain nuclei. This included regions not previously thought to mediate defensive behaviors, for example, the posterior paralaminar nuclei of the thalamus (PPnT), which we show to play a role in suppressing habituation. Neuronal recordings with Neuropixels probes show that (1) patterns of spiking activity and fUSI signals correlate well in space and (2) neurons in downstream nuclei preferentially respond to innately threatening visual stimuli. This work provides insight into the functional organization of the networks governing innate behaviors and demonstrates an experimental approach to explore the whole-brain neuronal activity downstream of targeted cell types.


Subject(s)
Behavior, Animal , Connectome/methods , Optogenetics/methods , Superior Colliculi/physiology , Ultrasonography/methods , Animals , Female , Male , Mice , Mice, Inbred C57BL , Superior Colliculi/diagnostic imaging , Thalamic Nuclei/diagnostic imaging , Thalamic Nuclei/physiology
16.
Neuron ; 108(5): 861-875.e7, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33080230

ABSTRACT

Imaging large-scale circuit dynamics is crucial to understanding brain function, but most techniques have a limited depth of field. Here, we describe volumetric functional ultrasound imaging (vfUSI), a platform for brain-wide vfUSI of hemodynamic activity in awake head-fixed mice. We combined a high-frequency 1,024-channel 2D-array transducer with advanced multiplexing and high-performance computing for real-time 3D power Doppler imaging at a high spatiotemporal resolution (220 × 280 × 175 µm3, up to 6 Hz). We developed a standardized software pipeline for registration, segmentation, and temporal analysis in 268 individual brain regions based on the Allen Mouse Common Coordinate Framework. We demonstrated the high sensitivity of vfUSI under multiple experimental conditions, and we successfully imaged stimulus-evoked activity when only a few trials were averaged. We also mapped neural circuits in vivo across the whole brain during optogenetic activation of specific cell types. Moreover, we identified the sequential activation of sensory-motor networks during a grasping water-droplet task.


Subject(s)
Brain/diagnostic imaging , Functional Neuroimaging/methods , Imaging, Three-Dimensional/methods , Nerve Net/diagnostic imaging , Ultrasonography, Doppler/methods , Wakefulness , Animals , Brain/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/physiology , Optogenetics/methods , Photic Stimulation/methods , Psychomotor Performance/physiology , Rats , Rats, Sprague-Dawley , Ultrasonography/methods , Vibrissae/physiology , Wakefulness/physiology
17.
Phys Med Biol ; 53(19): 5469-80, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18765888

ABSTRACT

Pulse-inversion (PI) sequences are sensitive to the nonlinear echoes from microbubbles allowing an improvement in the blood-to-tissue contrast. However, at larger mechanical indices, this contrast is reduced by harmonics produced during nonlinear propagation. A method for tissue harmonics cancellation exploiting time reversal is experimentally implemented using a 128-channel 12-bit emitter receiver. The probe calibration is performed by acquiring the nonlinear echo of a wire in water. These distorted pulses are time-reversed, optimized and used for the PI imaging of a tissue phantom. Compared to normal (straight) pulses, the time-reversed distorted pulses reduced the tissue signal in PI by 11 dB. The second harmonic signals from microbubbles flowing in a wall-less vessel were unaffected by the correction. This technique can thus increase the blood-to-tissue contrast ratio while keeping the pressure and the number of pulses constant.


Subject(s)
Artifacts , Contrast Media , Calibration , Copper , Microbubbles , Phantoms, Imaging , Time Factors
18.
Ultrasound Med Biol ; 34(9): 1373-86, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18395961

ABSTRACT

This paper presents an initial clinical evaluation of in vivo elastography for breast lesion imaging using the concept of supersonic shear imaging. This technique is based on the combination of a radiation force induced in tissue by an ultrasonic beam and an ultrafast imaging sequence capable of catching in real time the propagation of the resulting shear waves. The local shear wave velocity is recovered using a time-offlight technique and enables the 2-D mapping of shear elasticity. This imaging modality is implemented on a conventional linear probe driven by a dedicated ultrafast echographic device. Consequently, it can be performed during a standard echographic examination. The clinical investigation was performed on 15 patients, which corresponded to 15 lesions (4 cases BI-RADS 3, 7 cases BI-RADS 4 and 4 cases BI-RADS 5). The ability of the supersonic shear imaging technique to provide a quantitative and local estimation of the shear modulus of abnormalities with a millimetric resolution is illustrated on several malignant (invasive ductal and lobular carcinoma) and benign cases (fibrocystic changes and viscous cysts). In the investigated cases, malignant lesions were found to be significantly different from benign solid lesions with respect to their elasticity values. Cystic lesions have shown no shear wave propagate at all in the lesion (because shear waves do not propage in liquid). These preliminary clinical results directly demonstrate the clinical feasibility of this new elastography technique in providing quantitative assessment of relative stiffness of breast tissues. This technique of evaluating tissue elasticity gives valuable information that is complementary to the B-mode morphologic information. More extensive studies are necessary to validate the assumption that this new mode potentially helps the physician in both false-positive and false-negative rejection.


Subject(s)
Breast Diseases/diagnostic imaging , Elasticity Imaging Techniques/methods , Image Processing, Computer-Assisted , Ultrasonography, Mammary/methods , Adult , Aged , Breast Cyst/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Elasticity , Female , Humans , Middle Aged , Sensitivity and Specificity , Stress, Mechanical , Viscosity , Young Adult
19.
J Cereb Blood Flow Metab ; 38(10): 1690-1700, 2018 10.
Article in English | MEDLINE | ID: mdl-29972329

ABSTRACT

Following middle cerebral artery (MCA) stroke, enhanced contralesional evoked responses have been consistently reported both in man and rodents as part of plastic processes thought to influence motor recovery. How early this marker of large-scale network reorganization develops has however been little addressed, yet has clinical relevance for rehabilitation strategies targeting plasticity. Previous work in mice has reported enhanced contralesional responses to unaffected-side forepaw stimulation as early as 45 min after MCA small branch occlusion. Using functional ultrasound imaging (fUSi) in anesthetized rats subjected to distal temporary MCA occlusion (MCAo), we assessed here (i) whether enhanced contralesional responses also occurred with unaffected-side whisker pad stimulation, and if so, how early after MCAo; and (ii) the time course of this abnormal response during occlusion and after reperfusion. We replicate in a more proximal MCA occlusion model the earlier findings of ultra-early enhanced contralesional evoked responses. In addition, we document this phenomenon within minutes after MCAo, and its persistence throughout the entire 90-min occlusion as well as 90-min reperfusion periods studied. These findings suggest that plastic processes may start within minutes following MCAo in rodents. If replicated in man, they might have implications regarding how early plasticity-enhancing therapies can be initiated after stroke.


Subject(s)
Electric Stimulation , Functional Laterality/physiology , Infarction, Middle Cerebral Artery/physiopathology , Neuronal Plasticity/physiology , Animals , Male , Rats , Rats, Sprague-Dawley , Ultrasonography , Vibrissae/physiology
20.
Neuron ; 100(5): 1241-1251.e7, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30521779

ABSTRACT

Large numbers of brain regions are active during behaviors. A high-resolution, brain-wide activity map could identify brain regions involved in specific behaviors. We have developed functional ultrasound imaging to record whole-brain activity in behaving mice at a resolution of ∼100 µm. We detected 87 active brain regions during visual stimulation that evoked the optokinetic reflex, a visuomotor behavior that stabilizes the gaze both horizontally and vertically. Using a genetic mouse model of congenital nystagmus incapable of generating the horizontal reflex, we identified a subset of regions whose activity was reflex dependent. By blocking eye motion in control animals, we further separated regions whose activity depended on the reflex's motor output. Remarkably, all reflex-dependent but eye motion-independent regions were located in the thalamus. Our work identifies functional modules of brain regions involved in sensorimotor integration and provides an experimental approach to monitor whole-brain activity of mice in normal and disease states.


Subject(s)
Brain Mapping/methods , Brain/physiology , Motion Perception/physiology , Nystagmus, Optokinetic , Psychomotor Performance , Ultrasonography/methods , Animals , Brain/physiopathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology , Nystagmus, Congenital/physiopathology , Photic Stimulation , Reflex
SELECTION OF CITATIONS
SEARCH DETAIL