Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Allergy Clin Immunol ; 131(1): 187-200.e1-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23006545

ABSTRACT

BACKGROUND: Allergen exposure at lung and gut mucosae can lead to aberrant T(H)2 immunity and allergic disease. The epithelium-associated cytokines thymic stromal lymphopoietin (TSLP), IL-25, and IL-33 are suggested to be important for the initiation of these responses. OBJECTIVE: We sought to investigate the contributions of TSLP, IL-25, and IL-33 in the development of allergic disease to the common allergens house dust mite (HDM) or peanut. METHODS: Neutralizing antibodies or mice deficient in TSLP, IL-25, or IL-33 signaling were exposed to HDM intranasally or peanut intragastrically, and immune inflammatory and physiologic responses were evaluated. In vitro assays were performed to examine specific dendritic cell (DC) functions. RESULTS: We showed that experimental HDM-induced allergic asthma and food allergy and anaphylaxis to peanut were associated with TSLP production but developed independently of TSLP, likely because these allergens functionally mimicked TSLP inhibition of IL-12 production and induction of OX40 ligand (OX40L) on DCs. Blockade of OX40L significantly lessened allergic responses to HDM or peanut. Although IL-25 and IL-33 induced OX40L on DCs in vitro, only IL-33 signaling was necessary for intact allergic immunity, likely because of its superior ability to induce DC OX40L and expand innate lymphoid cells in vivo. CONCLUSION: These data identify a nonredundant, IL-33-driven mechanism initiating T(H)2 responses to the clinically relevant allergens HDM and peanut. Our findings, along with those in infectious and transgenic/surrogate allergen systems, favor a paradigm whereby multiple molecular pathways can initiate T(H)2 immunity, which has implications for the conceptualization and manipulation of these responses in health and disease.


Subject(s)
Allergens/immunology , Arachis/immunology , Hypersensitivity/immunology , Interleukins/immunology , Pyroglyphidae/immunology , Thymus Gland/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Gastrointestinal Tract/immunology , Humans , Hypersensitivity/metabolism , Interleukin-33 , Interleukin-4/immunology , Interleukin-4/metabolism , Lung/immunology , Lung/metabolism , Mice , OX40 Ligand/immunology , OX40 Ligand/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , STAT6 Transcription Factor/metabolism , Signal Transduction , Stromal Cells/immunology , Stromal Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Thymus Gland/cytology
2.
PLoS One ; 9(2): e88714, 2014.
Article in English | MEDLINE | ID: mdl-24551140

ABSTRACT

Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b(+) DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Hypersensitivity/immunology , Hypersensitivity/parasitology , Interleukins/metabolism , Lung/immunology , Lung/parasitology , Pyroglyphidae/immunology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/pathology , Animals , Female , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Immunity/drug effects , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Interleukin-1alpha/metabolism , Interleukin-33 , Lung/pathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice , Mice, Inbred BALB C , Models, Immunological , Pyroglyphidae/drug effects , Time Factors
3.
PLoS One ; 3(6): e2426, 2008 Jun 11.
Article in English | MEDLINE | ID: mdl-18545674

ABSTRACT

BACKGROUND: Allergic asthma is a complex process arising out of the interaction between the immune system and aeroallergens. Yet, the relationship between aeroallergen exposure, allergic sensitization and disease remains unclear. This knowledge is essential to gain further insight into the origin and evolution of allergic diseases. The objective of this research is to develop a computational view of the interaction between aeroallergens and the host by investigating the impact of dose and length of aeroallergen exposure on allergic sensitization and allergic disease outcomes, mainly airway inflammation and to a lesser extent lung dysfunction and airway remodeling. METHODS AND PRINCIPAL FINDINGS: BALB/C mice were exposed intranasally to a range of concentrations of the most pervasive aeroallergen worldwide, house dust mite (HDM), for up to a quarter of their lifespan (20 weeks). Actual biological data delineating the kinetics, nature and extent of responses for local (airway inflammation) and systemic (HDM-specific immunoglobulins) events were obtained. Mathematical equations for each outcome were developed, evaluated, refined through several iterations involving in vivo experimentation, and validated. The models accurately predicted the original biological data and simulated an extensive array of previously unknown responses, eliciting two- and three-dimensional models. Our data demonstrate the non-linearity of the relationship between aeroallergen exposure and either allergic sensitization or airway inflammation, identify thresholds, behaviours and maximal responsiveness for each outcome, and examine inter-variable relationships. CONCLUSIONS: This research provides a novel way to visualize allergic responses in vivo and establishes a basic experimental platform upon which additional variables and perturbations can be incorporated into the system.


Subject(s)
Air Pollutants/toxicity , Allergens/immunology , Mites/immunology , Animals , Asthma/immunology , Dose-Response Relationship, Immunologic , Dust , Female , Hypersensitivity/immunology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL