Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.916
Filter
Add more filters

Publication year range
1.
Cell ; 165(3): 566-79, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27087445

ABSTRACT

Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is the C-terminal cleavage product of profibrillin, and we name it Asprosin. Asprosin is secreted by white adipose, circulates at nanomolar levels, and is recruited to the liver, where it activates the G protein-cAMP-PKA pathway, resulting in rapid glucose release into the circulation. Humans and mice with insulin resistance show pathologically elevated plasma asprosin, and its loss of function via immunologic or genetic means has a profound glucose- and insulin-lowering effect secondary to reduced hepatic glucose release. Asprosin represents a glucogenic protein hormone, and therapeutically targeting it may be beneficial in type II diabetes and metabolic syndrome.


Subject(s)
Fasting/metabolism , Microfilament Proteins/metabolism , Peptide Fragments/metabolism , Peptide Hormones/metabolism , Adipose Tissue, White/metabolism , Amino Acid Sequence , Animals , Antibodies/administration & dosage , Circadian Rhythm , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fasting/blood , Female , Fetal Growth Retardation/metabolism , Fibrillin-1 , Glucose/metabolism , Humans , Insulin/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Microfilament Proteins/blood , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Molecular Sequence Data , Peptide Fragments/blood , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Hormones/blood , Peptide Hormones/chemistry , Peptide Hormones/genetics , Progeria/metabolism , Recombinant Proteins/administration & dosage , Sequence Alignment
2.
Nature ; 613(7944): 496-502, 2023 01.
Article in English | MEDLINE | ID: mdl-36653571

ABSTRACT

Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility1-5. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance6-8. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact. Footprint current densities exceeding 1 kA cm-2 at less than ±0.7 V, transconductances of 0.2-0.4 S, short transient times of less than 1 ms and ultra-stable switching (>50,000 cycles) are achieved in, to our knowledge, the first vertically stacked complementary vertical OECT logic circuits. This architecture opens many possibilities for fundamental studies of organic semiconductor redox chemistry and physics in nanoscopically confined spaces, without macroscopic electrolyte contact, as well as wearable and implantable device applications.

3.
Nature ; 616(7957): 543-552, 2023 04.
Article in English | MEDLINE | ID: mdl-37046093

ABSTRACT

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Subject(s)
Evolution, Molecular , Genome, Human , Lung Neoplasms , Neoplasm Metastasis , Transcriptome , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Genomics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Neoplasm Metastasis/genetics , Transcriptome/genetics , Alleles , Machine Learning , Genome, Human/genetics
4.
Nature ; 616(7957): 553-562, 2023 04.
Article in English | MEDLINE | ID: mdl-37055640

ABSTRACT

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Mutation , Neoplasm Metastasis , Small Cell Lung Carcinoma , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cohort Studies , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Phylogeny , Small Cell Lung Carcinoma/pathology , Liquid Biopsy
5.
Nature ; 616(7957): 534-542, 2023 04.
Article in English | MEDLINE | ID: mdl-37046095

ABSTRACT

Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Clonal Evolution , Clone Cells , Evolution, Molecular , Lung Neoplasms , Neoplasm Metastasis , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Clone Cells/pathology , Cohort Studies , Disease Progression , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local
6.
Nature ; 616(7957): 525-533, 2023 04.
Article in English | MEDLINE | ID: mdl-37046096

ABSTRACT

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/etiology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Neoplasm Recurrence, Local/genetics , Phylogeny , Treatment Outcome , Smoking/genetics , Smoking/physiopathology , Mutagenesis , DNA Copy Number Variations
7.
Nature ; 616(7957): 563-573, 2023 04.
Article in English | MEDLINE | ID: mdl-37046094

ABSTRACT

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Subject(s)
Endogenous Retroviruses , Immunotherapy , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/virology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/virology , Disease Models, Animal , Endogenous Retroviruses/immunology , Immunotherapy/methods , Lung/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/virology , Tumor Microenvironment , B-Lymphocytes/immunology , Cohort Studies , Antibodies/immunology , Antibodies/therapeutic use
8.
Nature ; 616(7955): 159-167, 2023 04.
Article in English | MEDLINE | ID: mdl-37020004

ABSTRACT

A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 µm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1ß. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for  PM2.5 air pollutants  and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.


Subject(s)
Adenocarcinoma of Lung , Air Pollutants , Air Pollution , Cell Transformation, Neoplastic , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Environmental Exposure , ErbB Receptors/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Particulate Matter/adverse effects , Particulate Matter/analysis , Particle Size , Cohort Studies , Macrophages, Alveolar/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology
9.
Nature ; 597(7877): 555-560, 2021 09.
Article in English | MEDLINE | ID: mdl-34497419

ABSTRACT

The immune microenvironment influences tumour evolution and can be both prognostic and predict response to immunotherapy1,2. However, measurements of tumour infiltrating lymphocytes (TILs) are limited by a shortage of appropriate data. Whole-exome sequencing (WES) of DNA is frequently performed to calculate tumour mutational burden and identify actionable mutations. Here we develop T cell exome TREC tool (T cell ExTRECT), a method for estimation of T cell fraction from WES samples using a signal from T cell receptor excision circle (TREC) loss during V(D)J recombination of the T cell receptor-α gene (TCRA (also known as TRA)). TCRA T cell fraction correlates with orthogonal TIL estimates and is agnostic to sample type. Blood TCRA T cell fraction is higher in females than in males and correlates with both tumour immune infiltrate and presence of bacterial sequencing reads. Tumour TCRA T cell fraction is prognostic in lung adenocarcinoma. Using a meta-analysis of tumours treated with immunotherapy, we show that tumour TCRA T cell fraction predicts immunotherapy response, providing value beyond measuring tumour mutational burden. Applying T cell ExTRECT to a multi-sample pan-cancer cohort reveals a high diversity of the degree of immune infiltration within tumours. Subclonal loss of 12q24.31-32, encompassing SPPL3, is associated with reduced TCRA T cell fraction. T cell ExTRECT provides a cost-effective technique to characterize immune infiltrate alongside somatic changes.


Subject(s)
Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Aspartic Acid Endopeptidases/genetics , Cohort Studies , Exome/genetics , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Prognosis , Receptors, Antigen, T-Cell, alpha-beta/genetics , Exome Sequencing/economics
10.
Nature ; 593(7857): 147-151, 2021 05.
Article in English | MEDLINE | ID: mdl-33828301

ABSTRACT

Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine1. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues2. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes3, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP). CD4+ T effector (Teff) cells upregulate expression of the xenobiotic transporter MDR1 (encoded by Abcb1a) in the siLP to prevent bile acid toxicity and suppress Crohn's disease-like small bowel inflammation4. Here we identify the nuclear xenobiotic receptor CAR (encoded by Nr1i3) as a regulator of MDR1 expression in T cells that can safeguard against bile acid toxicity and inflammation in the mouse small intestine. Activation of CAR induced large-scale transcriptional reprogramming in Teff cells that infiltrated the siLP, but not the colon. CAR induced the expression of not only detoxifying enzymes and transporters in siLP Teff cells, as in hepatocytes, but also the key anti-inflammatory cytokine IL-10. Accordingly, CAR deficiency in T cells exacerbated bile acid-driven ileitis in T cell-reconstituted Rag1-/- or Rag2-/- mice, whereas pharmacological activation of CAR suppressed it. These data suggest that CAR acts locally in T cells that infiltrate the small intestine to detoxify bile acids and resolve inflammation. Activation of this program offers an unexpected strategy to treat small bowel Crohn's disease and defines lymphocyte sub-specialization in the small intestine.


Subject(s)
Bile Acids and Salts/metabolism , Gene Expression Regulation , Intestine, Small/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , T-Lymphocytes/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Constitutive Androstane Receptor , Crohn Disease/metabolism , Female , Ileitis/metabolism , Inflammation/metabolism , Interleukin-10/biosynthesis , Interleukin-10/genetics , Intestine, Small/cytology , Mice
11.
Annu Rev Biochem ; 80: 211-37, 2011.
Article in English | MEDLINE | ID: mdl-21548783

ABSTRACT

Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.


Subject(s)
Cell Communication/physiology , Cell Membrane/physiology , Integrins , Potassium Channels , Viral Matrix Proteins , Integrins/chemistry , Integrins/metabolism , Ions/chemistry , Ions/metabolism , Ligands , Models, Molecular , Potassium Channels/chemistry , Potassium Channels/metabolism , Protein Conformation , Signal Transduction/physiology , Thermodynamics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism
12.
Nature ; 587(7832): 126-132, 2020 11.
Article in English | MEDLINE | ID: mdl-32879494

ABSTRACT

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Subject(s)
Chromosomal Instability/genetics , Evolution, Molecular , Karyotype , Neoplasm Metastasis/genetics , Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 8/genetics , Clone Cells/metabolism , Clone Cells/pathology , Cyclin E/genetics , DNA Copy Number Variations/genetics , Female , Humans , Loss of Heterozygosity/genetics , Male , Mutagenesis , Neoplasm Metastasis/pathology , Neoplasms/pathology , Oncogene Proteins/genetics
13.
N Engl J Med ; 387(25): 2331-2343, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36546625

ABSTRACT

BACKGROUND: In patients with rifampin-resistant tuberculosis, all-oral treatment regimens that are more effective, shorter, and have a more acceptable side-effect profile than current regimens are needed. METHODS: We conducted an open-label, phase 2-3, multicenter, randomized, controlled, noninferiority trial to evaluate the efficacy and safety of three 24-week, all-oral regimens for the treatment of rifampin-resistant tuberculosis. Patients in Belarus, South Africa, and Uzbekistan who were 15 years of age or older and had rifampin-resistant pulmonary tuberculosis were enrolled. In stage 2 of the trial, a 24-week regimen of bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaLM) was compared with a 9-to-20-month standard-care regimen. The primary outcome was an unfavorable status (a composite of death, treatment failure, treatment discontinuation, loss to follow-up, or recurrence of tuberculosis) at 72 weeks after randomization. The noninferiority margin was 12 percentage points. RESULTS: Recruitment was terminated early. Of 301 patients in stage 2 of the trial, 145, 128, and 90 patients were evaluable in the intention-to-treat, modified intention-to-treat, and per-protocol populations, respectively. In the modified intention-to-treat analysis, 11% of the patients in the BPaLM group and 48% of those in the standard-care group had a primary-outcome event (risk difference, -37 percentage points; 96.6% confidence interval [CI], -53 to -22). In the per-protocol analysis, 4% of the patients in the BPaLM group and 12% of those in the standard-care group had a primary-outcome event (risk difference, -9 percentage points; 96.6% CI, -22 to 4). In the as-treated population, the incidence of adverse events of grade 3 or higher or serious adverse events was lower in the BPaLM group than in the standard-care group (19% vs. 59%). CONCLUSIONS: In patients with rifampin-resistant pulmonary tuberculosis, a 24-week, all-oral regimen was noninferior to the accepted standard-care treatment, and it had a better safety profile. (Funded by Médecins sans Frontières; TB-PRACTECAL ClinicalTrials.gov number, NCT02589782.).


Subject(s)
Antitubercular Agents , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Humans , Antitubercular Agents/administration & dosage , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Therapy, Combination , Moxifloxacin/administration & dosage , Moxifloxacin/adverse effects , Moxifloxacin/therapeutic use , Rifampin/adverse effects , Rifampin/pharmacology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Adolescent , Young Adult , Adult , Linezolid/administration & dosage , Linezolid/adverse effects , Linezolid/therapeutic use , Administration, Oral
14.
Nature ; 567(7749): 479-485, 2019 03.
Article in English | MEDLINE | ID: mdl-30894752

ABSTRACT

The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments. Sparsely infiltrated tumours exhibited a waning of neoantigen editing during tumour evolution, indicative of historical immune editing, or copy-number loss of previously clonal neoantigens. Immune-infiltrated tumour regions exhibited ongoing immunoediting, with either loss of heterozygosity in human leukocyte antigens or depletion of expressed neoantigens. We identified promoter hypermethylation of genes that contain neoantigenic mutations as an epigenetic mechanism of immunoediting. Our results suggest that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.


Subject(s)
Antigens, Neoplasm/immunology , Evolution, Molecular , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Tumor Escape/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Antigen Presentation/immunology , Antigens, Neoplasm/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Male , Prognosis , Tumor Microenvironment/immunology
16.
Proc Natl Acad Sci U S A ; 119(43): e2205350119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36251994

ABSTRACT

Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.


Subject(s)
GATA2 Transcription Factor , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Ubiquitin-Protein Ligases , Humans , Male , Androgen Antagonists/therapeutic use , Androgens , Cell Line, Tumor , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
17.
Proc Natl Acad Sci U S A ; 119(13): e2023784119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35333654

ABSTRACT

Neural stem cells, the source of newborn neurons in the adult hippocampus, are intimately involved in learning and memory, mood, and stress response. Despite considerable progress in understanding the biology of neural stem cells and neurogenesis, regulating the neural stem cell population precisely has remained elusive because we have lacked the specific targets to stimulate their proliferation and neurogenesis. The orphan nuclear receptor TLX/NR2E1 governs neural stem and progenitor cell self-renewal and proliferation, but the precise mechanism by which it accomplishes this is not well understood because its endogenous ligand is not known. Here, we identify oleic acid (18:1ω9 monounsaturated fatty acid) as such a ligand. We first show that oleic acid is critical for neural stem cell survival. Next, we demonstrate that it binds to TLX to convert it from a transcriptional repressor to a transcriptional activator of cell-cycle and neurogenesis genes, which in turn increases neural stem cell mitotic activity and drives hippocampal neurogenesis in mice. Interestingly, oleic acid-activated TLX strongly up-regulates cell cycle genes while only modestly up-regulating neurogenic genes. We propose a model in which sufficient quantities of this endogenous ligand must bind to TLX to trigger the switch to proliferation and drive the progeny toward neuronal lineage. Oleic acid thus serves as a metabolic regulator of TLX activity that can be used to selectively target neural stem cells, paving the way for future therapeutic manipulations to counteract pathogenic impairments of neurogenesis.


Subject(s)
Hippocampus , Neurogenesis , Oleic Acid , Receptors, Cytoplasmic and Nuclear , Animals , Cell Proliferation , Hippocampus/growth & development , Hippocampus/metabolism , Ligands , Mice , Neurogenesis/physiology , Oleic Acid/metabolism , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/metabolism
18.
J Infect Dis ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041706

ABSTRACT

BACKGROUND: Oral human papillomavirus (HPV) infections are a leading cause of oropharyngeal cancers. In 2015 and 2016, HPV vaccines became publicly funded for gay, bisexual, and other men who have sex with men (GBM) under 27 years of age in most Canadian provinces. METHODS: Between 2017 and 2019, sexually-active GBM in Montreal, Toronto, and Vancouver were recruited through respondent-driven sampling. Participants aged 16 to 30 years were invited to self-collect oral rinse specimens for HPV testing. We estimated HPV prevalence in the oral tract overall and compared these by vaccination status. RESULTS: Among the 838 GBM with a valid oral specimen, 36.9% reported receiving ≥1 dose of HPV vaccine. Overall, oral HPV prevalence was 2.6% (95% confidence interval, CI: 1.5, 3.7%) for at least one HPV type and 1.2% (95% CI: 0.5, 1.9%) for any high-risk type. We detected quadrivalent (HPV 6/11/16/18) vaccine-preventable types in 0.3% (95% CI: 0.0, 1.0%) of vaccinated individuals and 1.1% (95% CI: 0.1, 2.0%) in unvaccinated individuals. CONCLUSIONS: Oral HPV prevalence was low in a population of young urban GBM in Canada of whom 37% were vaccinated. Findings serve as a benchmark for monitoring of vaccination impacts on oral HPV infection within this priority population.

19.
Gut ; 73(7): 1052-1075, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38609165

ABSTRACT

The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.


Subject(s)
Clostridium Infections , Fecal Microbiota Transplantation , Gastroenterology , Fecal Microbiota Transplantation/methods , Humans , Clostridium Infections/therapy , Gastroenterology/standards , COVID-19/therapy , SARS-CoV-2 , Recurrence , Clostridioides difficile , United Kingdom , Societies, Medical
20.
J Neurosci ; 43(25): 4642-4649, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37221095

ABSTRACT

Auditory experience plays a critical role in hearing development. Developmental auditory deprivation because of otitis media, a common childhood disease, produces long-standing changes in the central auditory system, even after the middle ear pathology is resolved. The effects of sound deprivation because of otitis media have been mostly studied in the ascending auditory system but remain to be examined in the descending pathway that runs from the auditory cortex to the cochlea via the brainstem. Alterations in the efferent neural system could be important because the descending olivocochlear pathway influences the neural representation of transient sounds in noise in the afferent auditory system and is thought to be involved in auditory learning. Here, we show that the inhibitory strength of the medial olivocochlear efferents is weaker in children with a documented history of otitis media relative to controls; both boys and girls were included in the study. In addition, children with otitis media history required a higher signal-to-noise ratio on a sentence-in-noise recognition task than controls to achieve the same criterion performance level. Poorer speech-in-noise recognition, a hallmark of impaired central auditory processing, was related to efferent inhibition, and could not be attributed to the middle ear or cochlear mechanics.SIGNIFICANCE STATEMENT Otitis media is the second most common reason children go to the doctor. Previously, degraded auditory experience because of otitis media has been associated with reorganized ascending neural pathways, even after middle ear pathology resolved. Here, we show that altered afferent auditory input because of otitis media during childhood is also associated with long-lasting reduced descending neural pathway function and poorer speech-in-noise recognition. These novel, efferent findings may be important for the detection and treatment of childhood otitis media.


Subject(s)
Hearing , Otitis Media , Male , Female , Child , Humans , Feedback , Noise , Auditory Perception , Cochlea/physiology , Efferent Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL