Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cytometry A ; 93(12): 1226-1233, 2018 12.
Article in English | MEDLINE | ID: mdl-30549400

ABSTRACT

Circulating tumor cells (CTCs) carry valuable biological information. While enumeration of CTCs in peripheral blood is an FDA-approved prognostic indicator of survival in metastatic prostate and other cancers, analysis of CTC phenotypic and genomic markers is needed to identify cancer origin and elucidate pathways that can guide therapeutic selection for personalized medicine. Given the emergence of single-cell mRNA sequencing technologies, a method is needed to isolate CTCs with high sensitivity and specificity as well as compatibility with downstream genomic analysis. Flow cytometry is a powerful tool to analyze and sort single cells, but pre-enrichment is required prior to flow sorting for efficient isolation of CTCs due to the extreme low frequency of CTCs in blood (one in billions of blood cells). While current enrichment technologies often require many steps and result in poor recovery, we demonstrate a magnetic separator and acoustic microfluidic focusing chip integrated system that enriches rare cells in-line with FACS™ (fluorescent activated cell sorting) and single-cell sequencing. This system analyzes, isolates, and index sorts single cells directly into 96-well plates containing reagents for Molecular Indexing (MI) and transcriptional profiling of single cells. With an optimized workflow using the integrated enrichment-FACS system, we performed a proof-of-concept experiment with spiked prostate cancer cells in peripheral blood and achieved: (i) a rapid one-step process to isolate rare cancer cells from lysed whole blood; (ii) an average of 92% post-enrichment cancer cell recovery (R2 = 0.9998) as compared with 55% recovery for a traditional benchtop workflow; and (iii) detection of differentially expressed genes at a single cell level that are consistent with reported cell-type dependent expression signatures for prostate cancer cells. These model system results lay the groundwork for applying our approach to human blood samples from prostate and other cancer patients, and support the enrichment-FACS system as a flexible solution for isolation and characterization of CTCs for cancer diagnosis. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Single-Cell Analysis/methods , Cell Count/methods , Cell Line, Tumor , Cell Separation/methods , Flow Cytometry/methods , Humans
2.
Blood ; 121(14): 2689-703, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23393050

ABSTRACT

Survival in infants younger than 1 year who have acute lymphoblastic leukemia (ALL) is inferior whether MLL is rearranged (R) or germline (G). MLL translocations confer chemotherapy resistance, and infants experience excess complications. We characterized in vitro sensitivity to the pan-antiapoptotic BCL-2 family inhibitor obatoclax mesylate in diagnostic leukemia cells from 54 infants with ALL/bilineal acute leukemia because of the role of prosurvival BCL-2 proteins in resistance, their imbalanced expression in infant ALL, and evidence of obatoclax activity with a favorable toxicity profile in early adult leukemia trials. Overall, half maximal effective concentrations (EC50s) were lower than 176 nM (the maximal plasma concentration [Cmax] with recommended adult dose) in 76% of samples, whether in MLL-AF4, MLL-ENL, or other MLL-R or MLL-G subsets, and regardless of patients' poor prognostic features. However, MLL status and partner genes correlated with EC50. Combined approaches including flow cytometry, Western blot, obatoclax treatment with death pathway inhibition, microarray analyses, and/or electron microscopy indicated a unique killing mechanism involving apoptosis, necroptosis, and autophagy in MLL-AF4 ALL cell lines and primary MLL-R and MLL-G infant ALL cells. This in vitro obatoclax activity and its multiple killing mechanisms across molecular cytogenetic subsets provide a rationale to incorporate a similarly acting compound into combination strategies to combat infant ALL.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Pyrroles/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Leukemic/drug effects , Histone-Lysine N-Methyltransferase , Humans , Indoles , Infant , Infant, Newborn , Myeloid-Lymphoid Leukemia Protein/genetics , Necrosis/drug therapy , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
4.
Vasc Med ; 18(4): 204-14, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23892447

ABSTRACT

Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation.


Subject(s)
Cell Communication , Cell-Derived Microparticles/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Signal Transduction , Vascular Diseases/metabolism , Animals , Cell-Derived Microparticles/pathology , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Humans , Vascular Diseases/pathology , Vascular Diseases/physiopathology , Vascular Diseases/therapy
5.
Rheumatol Int ; 32(4): 997-1002, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21246370

ABSTRACT

Circulating endothelial progenitor cells (EPCs) are reduced in patients with systemic lupus erythematosus (SLE). A reduced number of EPCs are associated with the presence of atherosclerosis in other populations. We sought to determine whether the reduction in EPC numbers in SLE is dependent on the presence of advanced coronary artery calcification (CAC). Patients with SLE had previous coronary calcium scores which placed them in either the >75th percentile or <25th percentile for their age. Seventeen patients with SLE and 13 healthy controls (HC) were included in the study. White blood cells were stained for EPC and progenitor cell markers including CD34, CD133, and VEGFR and analyzed by flow cytometry. SLE patients had repeated coronary imaging as well as carotid ultrasound. There was no difference in age between groups. SLE patients with advanced CAC were more likely to be hypertensive, to be smokers, and to have longer disease duration than SLE patients without CAC. SLE patients without evidence of CAC had a significantly lower number of EPCs (CD34+/CD133+/VEGFR+) compared to HC (median (IQR)) 0 (0, 6.7) vs. 10.2 (5.8, 12.3) (P = 0.02). Total numbers of PCs (CD133+/CD34+) were not significantly decreased in patients with SLE ((mean ± SEM) 1,007 ± 154 vs. 824 ± 170 (P = 0.20)). No significant difference was seen in EPC number between SLE patients without CAC and those with advanced CAC. Increased carotid intima-media thickness did not correlate with CAC or EPC number in SLE patients. Reduced numbers of EPCs in SLE patients may be observed compared to HC even in the absence of CAC. Differences in measured risk factor profiles and depletion of total circulating PCs do not fully explain this finding.


Subject(s)
Coronary Vessels/pathology , Endothelial Cells/pathology , Lupus Erythematosus, Systemic/blood , Stem Cells/pathology , Vascular Calcification/blood , Adult , Aged , Carotid Intima-Media Thickness , Endothelium, Vascular/pathology , Female , Humans , Lupus Erythematosus, Systemic/pathology , Male , Middle Aged , Vascular Calcification/pathology
6.
Transplantation ; 106(4): 754-766, 2022 04 01.
Article in English | MEDLINE | ID: mdl-33993180

ABSTRACT

BACKGROUND: There is a critical need for development of biomarkers to noninvasively monitor for lung transplant rejection. We investigated the potential of circulating donor lung-specific exosome profiles for time-sensitive diagnosis of acute rejection in a rat orthotopic lung transplant model. METHODS: Left lungs from Wistar transgenic rats expressing human CD63-GFP, an exosome marker, were transplanted into fully MHC-mismatched Lewis recipients or syngeneic controls. Recipient blood was collected between 4 h and 10 d after transplantation, and plasma was processed for exosome isolation by size exclusion column chromatography and ultracentrifugation. Circulating donor exosomes were profiled using antihuman CD63 antibody quantum dot on the nanoparticle detector and via GFP trigger on the nanoparticle flow cytometer. RESULTS: In syngeneic controls, steady-state levels of circulating donor exosomes were detected at all posttransplant time points. Allogeneic grafts lost perfusion by day 8, consistent with acute rejection. Levels of circulating donor exosomes peaked on day 1, decreased significantly by day 2, and then reached baseline levels by day 3. Notably, decrease in peripheral donor exosome levels occurred before grafts had histological evidence of acute rejection. CONCLUSIONS: Circulating donor lung-specific exosome profiles enable an early detection of acute rejection before histologic manifestation of injury to the pulmonary allograft. As acute rejection episodes are a major risk factor for the development of chronic lung allograft dysfunction, this biomarker may provide a novel noninvasive diagnostic platform that can translate into earlier therapeutic intervention for lung transplant patients.


Subject(s)
Exosomes , Lung Transplantation , Animals , Graft Rejection , Humans , Lung , Lung Transplantation/adverse effects , Rats , Rats, Inbred Lew , Rats, Wistar , Rodentia
7.
Nat Med ; 28(6): 1167-1177, 2022 06.
Article in English | MEDLINE | ID: mdl-35662283

ABSTRACT

Chemotherapy combined with immunotherapy has improved the treatment of certain solid tumors, but effective regimens remain elusive for pancreatic ductal adenocarcinoma (PDAC). We conducted a randomized phase 2 trial evaluating the efficacy of nivolumab (nivo; anti-PD-1) and/or sotigalimab (sotiga; CD40 agonistic antibody) with gemcitabine/nab-paclitaxel (chemotherapy) in patients with first-line metastatic PDAC ( NCT03214250 ). In 105 patients analyzed for efficacy, the primary endpoint of 1-year overall survival (OS) was met for nivo/chemo (57.7%, P = 0.006 compared to historical 1-year OS of 35%, n = 34) but was not met for sotiga/chemo (48.1%, P = 0.062, n = 36) or sotiga/nivo/chemo (41.3%, P = 0.223, n = 35). Secondary endpoints were progression-free survival, objective response rate, disease control rate, duration of response and safety. Treatment-related adverse event rates were similar across arms. Multi-omic circulating and tumor biomarker analyses identified distinct immune signatures associated with survival for nivo/chemo and sotiga/chemo. Survival after nivo/chemo correlated with a less suppressive tumor microenvironment and higher numbers of activated, antigen-experienced circulating T cells at baseline. Survival after sotiga/chemo correlated with greater intratumoral CD4 T cell infiltration and circulating differentiated CD4 T cells and antigen-presenting cells. A patient subset benefitting from sotiga/nivo/chemo was not identified. Collectively, these analyses suggest potential treatment-specific correlates of efficacy and may enable biomarker-selected patient populations in subsequent PDAC chemoimmunotherapy trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Albumins , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Humans , Nivolumab/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Pancreatic Neoplasms
8.
Vasc Med ; 16(3): 183-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21636677

ABSTRACT

Endothelial progenitor cells (EPCs) are thought to be important for maintaining normal vascular function. We conducted a prospective study evaluating the effect of the erythropoiesis-stimulating agent darbepoetin alfa on EPCs and vascular function in patients with chronic kidney disease (CKD), with or without diabetes. Thirty subjects with CKD (20 subjects with type II diabetes mellitus and 10 without diabetes mellitus) received weekly subcutaneous administration of darbepoetin alfa for 4 weeks. EPCs were measured at baseline and 2 and 4 weeks after drug administration. Vascular function was measured with brachial ultrasound and cell activity was measured with a cell proliferation assay. Cells expressing CD133, CD34, CD146 and CD146/31 were significantly elevated (all p < 0.05), flow-mediated vasodilatation increased 2.1%, 95% CI: (0.4%, 3.8%) and colony-forming units increased twofold, 95% CI: (1.7, 2.3) after 4 weeks of treatment with darbepoetin alfa. Subjects with diabetes exhibited an increase in a subset of EPCs (CD133( +) and 34(+), p < 0.01 and p = 0.06, respectively), vasodilatation and proliferation. In conclusion, the administration of darbepoetin alfa for 4 weeks increased a subset of EPCs, improved endothelial function and increased cell proliferation, including those with diabetes, which is consistent with a favorable improvement in vascular health.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/drug therapy , Endothelial Cells/drug effects , Erythropoietin/analogs & derivatives , Hematinics/therapeutic use , Kidney Diseases/drug therapy , Stem Cells/drug effects , AC133 Antigen , Aged , Antigens, CD/blood , Antigens, CD34/blood , Biomarkers/blood , Cell Proliferation/drug effects , Chronic Disease , Darbepoetin alfa , Diabetic Nephropathies/blood , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Diabetic Nephropathies/physiopathology , Endothelial Cells/immunology , Endothelial Cells/pathology , Erythropoietin/therapeutic use , Female , Glycoproteins/blood , Humans , Kidney Diseases/blood , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Linear Models , Male , Middle Aged , Peptides/blood , Philadelphia , Prospective Studies , Stem Cells/immunology , Stem Cells/pathology , Time Factors , Treatment Outcome , Vasodilation/drug effects
9.
Sci Rep ; 11(1): 8356, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863950

ABSTRACT

While awaiting the COVID-19 vaccines, researchers have been actively exploring the effectiveness of existing vaccines against the new virus, among which the BCG vaccine (Bacillus Calmette-Guérin) receives the most attention. While many reports suggest a potential role for BCG immunization in ameliorating SARS-CoV-2 infection, these findings remain controversial. With country-level COVID-19 outbreak data from Johns Hopkins University Coronavirus Resource Center, and BCG program data from World Atlas of BCG Policies and Practices and WHO/UNICE, we estimated a dynamic model to investigate the effect of BCG vaccination across time during the pandemic. Our results reconcile these varying reports regarding protection by BCG against COVID-19 in a variety of clinical scenarios and model specifications. We observe a notable protective effect of the BCG vaccine during the early stage of the pandemic. However, we do not see any strong evidence for protection during the later stages. We also see that a higher proportion of vaccinated young population may confer some level of communal protection against the virus in the early pandemic period, even when the proportion of vaccination in the older population is low. Our results highlight that while BCG may offer some protection against COVID-19, we should be cautious in interpreting the estimated effectiveness as it may vary over time and depend on the age structure of the vaccinated population.


Subject(s)
BCG Vaccine/immunology , COVID-19/prevention & control , COVID-19/pathology , COVID-19/virology , Humans , Models, Theoretical , Regression Analysis , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors
10.
Biochim Biophys Acta ; 1783(10): 1866-75, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18573285

ABSTRACT

Abrupt cessation of flow representing the acute loss of shear stress (simulated ischemia) to flow-adapted pulmonary microvascular endothelial cells (PMVEC) leads to reactive oxygen species (ROS) generation that signals for EC proliferation. We evaluated the role of caveolin-1 on this cellular response with mouse PMVEC that were preconditioned for 72 h to laminar flow at 5 dyn/cm(2) followed by stop of flow ("ischemia"). Preconditioning resulted in a 2.7-fold increase in cellular expression of K(ATP) (K(IR) 6.2) channels but no change in expression level of caveolin-1, gp91(phox), or MAP kinases. The initial response to ischemia in wild type cells was cell membrane depolarization that was abolished by gene targeting of K(IR) 6.2. The subsequent response was increased ROS production associated with activation of NADPH oxidase (NOX2) and then phosphorylation of MAP kinases (Erk, JNK). After 24 h of ischemia in wild type cells, the cell proliferation index increased 2.5 fold and the % of cells in S+G(2)/M phases increased 6-fold. This signaling cascade (cell membrane depolarization, ROS production, MAP kinase activation and cell proliferation) was abrogated in caveolin-1 null PMVEC or by treatment of wild type cells with filipin. These studies indicate that caveolin-1 functions as a shear sensor in flow-adapted EC resulting in ROS-mediated cell signaling and endothelial cell proliferation following the abrupt reduction in flow.


Subject(s)
Caveolae/metabolism , Endothelial Cells/metabolism , Ischemia/metabolism , Signal Transduction , Adaptation, Physiological , Animals , Caveolin 1/deficiency , Caveolin 1/genetics , Caveolin 1/metabolism , Cell Membrane/metabolism , Cells, Cultured , Ischemia/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , Phenotype , Phosphorylation , Reactive Oxygen Species/metabolism , Stress, Mechanical
11.
J Appl Physiol (1985) ; 106(2): 711-28, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19023021

ABSTRACT

We hypothesized that oxidative stress from hyperbaric oxygen (HBO(2), 2.8 ATA for 90 min daily) exerts a trophic effect on vasculogenic stem cells. In a mouse model, circulating stem/progenitor cell (SPC) recruitment and differentiation in subcutaneous Matrigel were stimulated by HBO(2) and by a physiological oxidative stressor, lactate. In combination, HBO(2) and lactate had additive effects. Vascular channels lined by CD34(+) SPCs were identified. HBO(2) and lactate accelerated channel development, cell differentiation based on surface marker expression, and cell cycle entry. CD34(+) SPCs exhibited increases in thioredoxin-1 (Trx1), Trx reductase, hypoxia-inducible factors (HIF)-1, -2, and -3, phosphorylated mitogen-activated protein kinases, vascular endothelial growth factor, and stromal cell-derived factor-1. Cell recruitment to Matrigel and protein synthesis responses were abrogated by N-acetyl cysteine, dithioerythritol, oxamate, apocynin, U-0126, neutralizing anti-vascular endothelial growth factor, or anti-stromal cell-derived factor-1 antibodies, and small inhibitory RNA to Trx reductase, lactate dehydrogenase, gp91(phox), HIF-1 or -2, and in mice conditionally null for HIF-1 in myeloid cells. By causing an oxidative stress, HBO(2) activates a physiological redox-active autocrine loop in SPCs that stimulates vasculogenesis. Thioredoxin system activation leads to elevations in HIF-1 and -2, followed by synthesis of HIF-dependent growth factors. HIF-3 has a negative impact on SPCs.


Subject(s)
Bone Marrow Cells/metabolism , Cell Differentiation , Cell Proliferation , Hyperbaric Oxygenation , Neovascularization, Physiologic , Oxidative Stress , Stem Cells/metabolism , Subcutaneous Tissue/blood supply , Angiogenesis Modulating Agents/pharmacology , Angiogenic Proteins/metabolism , Animals , Antioxidants/metabolism , Autocrine Communication , Biomarkers/metabolism , Blood Vessels/cytology , Blood Vessels/metabolism , Bone Marrow Cells/drug effects , Cell Cycle , Cell Differentiation/drug effects , Cell Movement , Cell Proliferation/drug effects , Collagen/metabolism , Drug Combinations , Glutathione/metabolism , Hypoxia-Inducible Factor 1/deficiency , Hypoxia-Inducible Factor 1/genetics , Lactic Acid/metabolism , Laminin/metabolism , Mice , Mice, Knockout , Neovascularization, Physiologic/drug effects , Oxidative Stress/drug effects , Proteoglycans/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Stem Cells/drug effects , Thioredoxins/metabolism , Time Factors
12.
Oncogene ; 38(13): 2241-2262, 2019 03.
Article in English | MEDLINE | ID: mdl-30478448

ABSTRACT

The poor outcomes in infant acute lymphoblastic leukemia (ALL) necessitate new treatments. Here we discover that EIF4E protein is elevated in most cases of infant ALL and test EIF4E targeting by the repurposed antiviral agent ribavirin, which has anticancer properties through EIF4E inhibition, as a potential treatment. We find that ribavirin treatment of actively dividing infant ALL cells on bone marrow stromal cells (BMSCs) at clinically achievable concentrations causes robust proliferation inhibition in proportion with EIF4E expression. Further, we find that ribavirin treatment of KMT2A-rearranged (KMT2A-R) infant ALL cells and the KMT2A-AFF1 cell line RS4:11 inhibits EIF4E, leading to decreases in oncogenic EIF4E-regulated cell growth and survival proteins. In ribavirin-sensitive KMT2A-R infant ALL cells and RS4:11 cells, EIF4E-regulated proteins with reduced levels of expression following ribavirin treatment include MYC, MCL1, NBN, BCL2 and BIRC5. Ribavirin-treated RS4:11 cells exhibit impaired EIF4E-dependent nuclear to cytoplasmic export and/or translation of the corresponding mRNAs, as well as reduced phosphorylation of the p-AKT1, p-EIF4EBP1, p-RPS6 and p-EIF4E signaling proteins. This leads to an S-phase cell cycle arrest in RS4:11 cells corresponding to the decreased proliferation. Ribavirin causes nuclear EIF4E to re-localize to the cytoplasm in KMT2A-AFF1 infant ALL and RS4:11 cells, providing further evidence for EIF4E inhibition. Ribavirin slows increases in peripheral blasts in KMT2A-R infant ALL xenograft-bearing mice. Ribavirin cooperates with chemotherapy, particularly L-asparaginase, in reducing live KMT2A-AFF1 infant ALL cells in BMSC co-cultures. This work establishes that EIF4E is broadly elevated across infant ALL and that clinically relevant ribavirin exposures have preclinical activity and effectively inhibit EIF4E in KMT2A-R cases, suggesting promise in EIF4E targeting using ribavirin as a means of treatment.


Subject(s)
Eukaryotic Initiation Factor-4E/genetics , Molecular Targeted Therapy/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Ribavirin/therapeutic use , Cell Line, Tumor , Child, Preschool , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Eukaryotic Initiation Factor-4E/physiology , Gene Expression Profiling , Gene Expression Regulation, Leukemic/drug effects , Humans , Indoles , Infant , Microarray Analysis , Multigene Family/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Biosynthesis/drug effects , Pyrroles/therapeutic use , Signal Transduction/drug effects
13.
Br J Haematol ; 141(6): 827-39, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18422996

ABSTRACT

Chemotherapy resistance from imbalanced apoptosis regulation may contribute to poor outcome in leukaemias with t(4;11). Anti-apoptotic BCL-2 expression and target modulation were characterized in cell lines with t(4;11) and BCL-2 expression was examined in MLL and non-MLL infant/paediatric leukaemia cases by Western blot analysis and/or real-time polymerase chain reaction. Cytotoxicity of Genasensetrade mark (Oblimersen Sodium, G3139) alone or combined with cytotoxic drugs was assessed by MTT [(3-4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays of the cell lines, applying pharmacostatistical response surface modelling of drug interactions. Apoptosis and cell cycle were evaluated by flow cytometry in RS4:11 cells. Primary leukaemias and cell lines with t(4;11) expressed abundant BCL2 mRNA and protein. Variable, sometimes substantial BCL2 mRNA was detected in other leukaemia subtypes. G3139 reduced BCL2 mRNA and protein in RS4:11 cells. The most sensitive cell line to single-agent G3139 was RS4:11. Low G3139 concentrations sensitized RS4:11 and MV4-11 cells to select anti-leukaemia cytotoxic drugs. In RS4:11 cells, combining G3139 with doxorubicin (ADR) increased active caspase 3 and TUNEL staining compared to ADR alone, indicating greater apoptosis, and G3139 increased S-phase progression. The abundant BCL-2 affords a molecular target in leukaemias with t(4;11). G3139 exhibits preclinical activity and synergy with select cytotoxic agents in RS4:11 and MV4-11 cells, and these effects occur through apoptosis.


Subject(s)
Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 4/genetics , Leukemia, Myeloid, Acute/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/genetics , Thionucleotides/pharmacology , Tumor Cells, Cultured
14.
Cytometry A ; 73(5): 430-41, 2008 May.
Article in English | MEDLINE | ID: mdl-18383310

ABSTRACT

Recent technological advances in flow cytometry instrumentation provide the basis for high-dimensionality and high-throughput biological experimentation in a heterogeneous cellular context. Concomitant advances in scalable computational algorithms are necessary to better utilize the information that is contained in these high-complexity experiments. The development of such tools has the potential to expand the utility of flow cytometric analysis from a predominantly hypothesis-driven mode to one of discovery, or hypothesis-generating research. A new method of analysis of flow cytometric data called Cytometric Fingerprinting (CF) has been developed. CF captures the set of multivariate probability distribution functions corresponding to list-mode data and then "flattens" them into a computationally efficient fingerprint representation that facilitates quantitative comparisons of samples. An experimental and synthetic data were generated to act as reference sets for evaluating CF. Without the introduction of prior knowledge, CF was able to "discover" the location and concentration of spiked cells in ungated analyses over a concentration range covering four orders of magnitude, to a lower limit on the order of 10 spiked events in a background of 100,000 events. We describe a new method for quantitative analysis of list-mode cytometric data. CF includes a novel algorithm for space subdivision that improves estimation of the probability density function by dividing space into nonrectangular polytopes. Additionally it renders a multidimensional distribution in the form of a one-dimensional multiresolution hierarchical fingerprint that creates a computationally efficient representation of high dimensionality distribution functions. CF supports both the generation and testing of hypotheses, eliminates sources of operator bias, and provides an increased level of automation of data analysis.


Subject(s)
Flow Cytometry/statistics & numerical data , Algorithms , Artificial Intelligence , Computational Biology , Data Interpretation, Statistical , Flow Cytometry/standards , Humans , Leukocytes, Mononuclear/classification , Leukocytes, Mononuclear/immunology , Models, Statistical , Multivariate Analysis , Quality Control
15.
Sci Rep ; 8(1): 5035, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29568081

ABSTRACT

Comprehensive molecular analysis of rare circulating tumor cells (CTCs) and cell clusters is often hampered by low throughput and purity, as well as cell loss. To address this, we developed a fully integrated platform for flow cytometry-based isolation of CTCs and clusters from blood that can be combined with whole transcriptome analysis or targeted RNA transcript quantification. Downstream molecular signature can be linked to cell phenotype through index sorting. This newly developed platform utilizes in-line magnetic particle-based leukocyte depletion, and acoustic cell focusing and washing to achieve >98% reduction of blood cells and non-cellular debris, along with >1.5 log-fold enrichment of spiked tumor cells. We could also detect 1 spiked-in tumor cell in 1 million WBCs in 4/7 replicates. Importantly, the use of a large 200µm nozzle and low sheath pressure (3.5 psi) minimized shear forces, thereby maintaining cell viability and integrity while allowing for simultaneous recovery of single cells and clusters from blood. As proof of principle, we isolated and transcriptionally characterized 63 single CTCs from a genetically engineered pancreatic cancer mouse model (n = 12 mice) and, using index sorting, were able to identify distinct epithelial and mesenchymal sub-populations based on linked single cell protein and gene expression.


Subject(s)
Neoplastic Cells, Circulating/metabolism , Pancreatic Neoplasms/pathology , Single-Cell Analysis/methods , Animals , Cell Line, Tumor/transplantation , Cell Separation/methods , Disease Models, Animal , Flow Cytometry/methods , Gene Expression Profiling/methods , Humans , Leukocyte Reduction Procedures/instrumentation , Leukocyte Reduction Procedures/methods , Liquid Biopsy/methods , Magnets , Mice , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics
16.
Immunol Invest ; 36(5-6): 581-605, 2007.
Article in English | MEDLINE | ID: mdl-18161520

ABSTRACT

Flow cytometric analyses of immune cell proliferation, differentiation, and function are limited by the number of different fluorochromes that can be resolved simultaneously. Additional colors to expand functional analytic capability will facilitate higher dimensional analyses of heterogeneous cell populations by basic and clinical scientists. Our aim in these studies was to evaluate CellVue Claret, a fluorescent, far-red emitting, membrane intercalating dye (excitation maximum: 655 nm, emission maximum 677 nm), as an alternative and/or complementary probe to PKH26 and CFSE(1) for polychromatic studies of immune cell proliferation and function. Using a BD FACSCalibur and human peripheral blood mononuclear cells (PBMCs) from 8 different donors (2 donors studied twice), we compared CellVue Claret with the two most commonly used visible-emitting proliferation dyes, PKH26 and CFSE, in terms of: (1) compatibility with 7-Amino-actinomycin D (7-AAD) as a viability marker; (2) effect of dye labeling on lymphocyte viability; and (3) the proliferative response of CD3+ T lymphocytes from 0-96 hours as assessed by dilution of each of the 3 cell tracking dyes in cultures stimulated with anti-CD3 plus IL-2. Post-labeling recoveries and viabilities were similar for all 3 dyes, with modestly higher initial staining intensities and coefficients of variation for CellVue Claret than for CFSE or PKH26. Lymphocyte viabilities in stimulated or unstimulated cultures were also unaffected by choice of dye. Proliferative responses of viable CD3+ lymphocytes were comparable for all three dyes, whether results were reported as Proliferative Fraction (percent of cells that had divided one or more times) or as Precursor Frequency (percent of parent population that had gone on to proliferate in response to anti-CD3 plus IL-2). In summary, T cell proliferation analysis using CellVue Claret gives results equivalent to those obtained with PKH26 or CFSE, expanding the choice of proliferation dyes suitable for use in high dimensional polychromatic studies on flow cytometers with far red (633 nm-658 nm) excitation capabilities.


Subject(s)
Cell Proliferation , Fluorescent Dyes , Leukocytes, Mononuclear/cytology , T-Lymphocytes/cytology , Cells, Cultured , Evaluation Studies as Topic , Humans , Rhodamines , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
Cytometry B Clin Cytom ; 92(4): 258-265, 2017 07.
Article in English | MEDLINE | ID: mdl-26566003

ABSTRACT

BACKGROUND: We previously reported the development of a novel high dimensional cytomic assay, the Vascular Health Profile (VHP) based on measurements of angiogenic circulating hematopoietic stem and progenitor cells (CHSPCAng ) and extracellular vesicles (EVs), that discovered a unique signature, differentiating the vascular status of diabetics and normal healthy controls. Here, we present data from a 3-year follow-up to evaluate the power of the VHP to identify individuals at risk for cardiovascular (CV) events. METHODS: The original data were generated as previously described by measuring a broad panel of progenitor cells and EVs and profiled using cytometric fingerprinting. Subjects were classified into groups according to the occurrence of adjudicated CV events including myocardial infarction, stroke, major adverse cardiovascular events, revascularization, and irregular rhythm. Cross-validated Linear Discriminate Analysis (LDA) models were constructed and used to predict the occurrence of events, and were evaluated for predictive accuracy (AUC, area under the curve) using receiver operating characteristic (ROC) analysis. RESULTS: Over the period of this analysis, follow-up data was obtained on 87 subjects, with 32 events occurring overall, and only in the diabetic group. In all cases, the VHP added significant predictive power, in the form of ROC analysis, for all evaluated outcomes with the exception of irregular rhythm. CONCLUSIONS: The VHP, a relatively simple blood test, can provide sensitive and clinically relevant information on the vascular status of a patient that may be useful for a variety of applications including drug development, clinical risk assessment, and companion diagnostics. © 2015 International Clinical Cytometry Society.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Atherosclerosis/diagnosis , Diabetes Mellitus, Type 2/diagnosis , Myocardial Infarction/diagnosis , Stem Cells/metabolism , Stroke/diagnosis , Aged , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/complications , Atherosclerosis/blood , Atherosclerosis/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Female , Humans , Male , Metabolome , Middle Aged , Myocardial Infarction/blood , Myocardial Infarction/complications , Myocardial Revascularization/statistics & numerical data , Predictive Value of Tests , Prognosis , Prospective Studies , ROC Curve , Stem Cells/pathology , Stroke/blood , Stroke/complications
19.
J Interferon Cytokine Res ; 26(11): 820-6, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17115900

ABSTRACT

2-5A-Dependent RNase L is an endoribonuclease that catalyzes RNA degradation and promotes apoptosis during the innate antiviral response in mammalian cells. Prior studies showed that RNASEL is widely expressed and suggested the presence of mRNA species of different sizes but lacked a characterization of these variants. Using RT-PCR, we show that RNASEL is expressed in all human tissues examined, whereas an alternatively generated spliced variant lacking the third exon (RNASEL del_Ex3) is solely expressed in peripheral blood leukocytes (PBL). Quantitative RT-PCR measurements of RNA from different PBL cell types separated by fluorescence activated cell sorting (FACS) showed that complete RNASEL mRNA levels were significantly elevated in granulocytes compared with all other PBL cell types, whereas expression was lowest in CD8(+) T cells. The alternatively spliced RNASEL del_Ex3 transcript was present in all PBL cell types examined but at lower levels than the full-length RNASEL mRNA. The presence of high levels of RNase L protein in granulocytes was confirmed by immunohistochemistry. Our findings are the first to demonstrate the presence of an alternatively spliced RNASEL mRNA and to demonstrate the variable expression of RNase L in different leukocytes. Our results suggest that RNase L plays an important role in granulocytes as an innate immunity enzyme that controls viral infections.


Subject(s)
Alternative Splicing/genetics , CD8-Positive T-Lymphocytes/immunology , Endoribonucleases/genetics , Granulocytes/immunology , Alternative Splicing/immunology , CD8-Positive T-Lymphocytes/cytology , Endoribonucleases/immunology , Granulocytes/cytology , Humans , Immunity, Innate/genetics , Organ Specificity/genetics , Organ Specificity/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Virus Diseases/genetics , Virus Diseases/immunology
20.
Cytometry B Clin Cytom ; 70(2): 56-62, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16456866

ABSTRACT

BACKGROUND: Age and cardiovascular disease status appear to alter numbers and function of circulating endothelial progenitor cells (EPCs). Despite no universal phenotypic definition, numerous studies have implicated progenitors with apparent endothelial potential in local responses to vascular injury and with cardiovascular disease in general. To further define the role of this lineage in peripheral artery disease (PAD), we developed a multiparameter flow cytometry assay to analyze multiple phenotypic definitions of progenitor cells (PCs), EPCs, and mature endothelial cells (ECs) and evaluate effects of age and PAD on baseline levels of each subset. METHODS: Blood was collected from young healthy subjects (N = 9, mean age 33 +/- 8 years), older healthy subjects (N = 13, mean age 66 +/- 8 years), and older subjects with PAD (N = 15, mean age 69 +/- 8 years). After ammonium chloride lysis, cells were stained and analyzed on a Becton-Dickinson LSR II with a 5-color antibody panel: FITC-anti-CD31, PE-anti-CD146, PE-anti-CD133, PerCP-Cy5.5-anti-CD3,-CD19,-CD33 (lineage panel), PE-Cy7-anti-CD34, and APC-anti-VEGF-R2. Viability was assessed by propidium iodide exclusion, and only viable, low to medium side scatter lineage-negative singlets were analyzed. In some studies, cells were sorted for morphological studies. Subsets were defined as indicated later. RESULTS: Our results, using a comprehensive flow cytometric panel, indicate that CD133+, CD34+, and CD133+/CD34+ PCs are elevated in younger healthy individuals compared to older individuals, both healthy and with PAD. However, the number of EPCs and mature ECs did not significantly differ among the three groups. Assessment of endothelial colony forming units and dual acLDL-lectin staining supported the flow cytometric findings. CONCLUSIONS: We describe a comprehensive flow cytometric method to detect circulating mature and progenitor endothelial populations confirmed by conventional morphological and functional assays. Our findings suggest that aging may influence circulating levels of PCs, but not EPCs or ECs; PAD had no effect on baseline levels of any populations investigated. This study provides the basis for evaluating the potential effects of acute stress and therapeutic intervention on circulating progenitor and endothelial populations as a biomarker for cardiovascular status.


Subject(s)
Aging/blood , Endothelial Cells/cytology , Flow Cytometry/methods , Peripheral Vascular Diseases/blood , Stem Cells/cytology , AC133 Antigen , Adult , Aged , Antigens, CD/analysis , Antigens, CD34/analysis , Biomarkers/blood , Cell Count , Colony-Forming Units Assay , Endothelial Cells/physiology , Glycoproteins/analysis , Humans , Middle Aged , Peptides/analysis , Phenotype , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL